Consider a sequence of positive integers {kn,n≥1}\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\{k_n,n\ge 1\}$$\end{document}, and an array of nonnegative real numbers {an,i,1≤i≤kn,n≥1}\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\{a_{n,i},1\le i\le k_n,n\ge 1\}$$\end{document} satisfying supn≥1∑i=1knan,i=C0∈(0,∞).\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\sup _{n\ge 1}\sum _{i=1}^{k_n}a_{n,i}=C_0\in (0,\infty ).$$\end{document} This paper introduces the concept of {an,i}\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\{a_{n,i}\}$$\end{document}-stochastic domination. We develop some techniques concerning this concept and apply them to remove an assumption in a strong law of large numbers of Chandra and Ghosal (Acta Math Hung 71(4):327–336, 1996). As a by-product, a considerable extension of a recent result of Boukhari (J Theor Probab, 2021. https://doi.org/10.1007/s10959-021-01120-6) is established and proved by a different method. The results on laws of large numbers are new even when the summands are independent. Relationships between the concept of {an,i}\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\{a_{n,i}\}$$\end{document}-stochastic domination and the concept of {an,i}\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\{a_{n,i}\}$$\end{document}-uniform integrability are presented. Two open problems are also discussed.