Two-sided bounds uniform in the real argument and the index for modified Bessel functions

被引:0
|
作者
B. V. Pal’tsev
机构
[1] Russian Academy of Sciences,Computer Center
来源
Mathematical Notes | 1999年 / 65卷
关键词
two-sided bounds; Bessel function; modified Bessel functions; upper and lower barriers; the differential inequality theorem;
D O I
暂无
中图分类号
学科分类号
摘要
Bounds uniform in the real argument and the index for the functionsaν(x)=xI′ν(x)/I′ν(x) andbν(x)=xK′ν(x)/Kν(x), as well as for the modified Bessel functionsIν(x) andKν(x), are established in the quadrantx>0, ν≥0, except for some neighborhoods of the pointx=0, ν=0.
引用
收藏
页码:571 / 581
页数:10
相关论文
共 50 条
  • [1] Two-sided bounds uniform in the real argument and the index for modified Bessel functions
    Pal'tsev, BV
    [J]. MATHEMATICAL NOTES, 1999, 65 (5-6) : 571 - 581
  • [2] UNIFORM BOUNDS FOR EXPRESSIONS INVOLVING MODIFIED BESSEL FUNCTIONS
    Gaunt, Robert E.
    [J]. MATHEMATICAL INEQUALITIES & APPLICATIONS, 2016, 19 (03): : 1003 - 1012
  • [3] UNIFORM BOUNDS FOR BESSEL FUNCTIONS
    Krasikov, I.
    [J]. JOURNAL OF APPLIED ANALYSIS, 2006, 12 (01) : 83 - 91
  • [4] ACCURATE GENERATION OF REAL-ORDER-AND-ARGUMENT BESSEL FUNCTIONS AND MODIFIED BESSEL FUNCTIONS - COMPUTER-PROGRAM
    SARKAR, TK
    LEWIS, JE
    [J]. PROCEEDINGS OF THE INSTITUTION OF ELECTRICAL ENGINEERS-LONDON, 1973, 120 (01): : 34 - 34
  • [5] Two-Sided Hypergenic Functions
    Eriksson, Sirkka-Liisa
    Orelma, Heikki
    Vieira, Nelson
    [J]. ADVANCES IN APPLIED CLIFFORD ALGEBRAS, 2017, 27 (01) : 111 - 123
  • [6] Two-Sided Hypergenic Functions
    Sirkka-Liisa Eriksson
    Heikki Orelma
    Nelson Vieira
    [J]. Advances in Applied Clifford Algebras, 2017, 27 : 111 - 123
  • [7] BOUNDS FOR MODIFIED BESSEL-FUNCTIONS
    LAFORGIA, A
    [J]. JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 1991, 34 (03) : 263 - 267
  • [8] Bounds for Turanians of modified Bessel functions
    Baricz, Arpad
    [J]. EXPOSITIONES MATHEMATICAE, 2015, 33 (02) : 223 - 251
  • [9] Bounds for the product of modified Bessel functions
    Baricz, Arpad
    Masirevic, Dragana Jankov
    Ponnusamy, Saminathan
    Singh, Sanjeev
    [J]. AEQUATIONES MATHEMATICAE, 2016, 90 (04) : 859 - 870
  • [10] Bounds for the product of modified Bessel functions
    Árpád Baricz
    Dragana Jankov Maširević
    Saminathan Ponnusamy
    Sanjeev Singh
    [J]. Aequationes mathematicae, 2016, 90 : 859 - 870