Lower Bound of the Number of Maximum Genus Embeddings and Genus Embeddings of K12s+7

被引:0
|
作者
Ren Han
Gao Yanbo
机构
[1] East China Normal University,Department of Mathematics
来源
Graphs and Combinatorics | 2011年 / 27卷
关键词
Maximum orientable genus embedding; Current graph; Optimal tree; Graceful labeling; 05C30;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we study lower bound of the number of maximum orientable genus embeddings (or MGE in short) for a loopless graph. We show that a connected loopless graph of order n has at least \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\frac{1}{4^{\gamma_M(G)}}\prod_{v\in{V(G)}}{(d(v)-1)!}}$$\end{document} distinct MGE’s, where γM(G) is the maximum orientable genus of G. Infinitely many examples show that this bound is sharp (i.e., best possible) for some types of graphs. Compared with a lower bound of Stahl (Eur J Combin 13:119–126, 1991) which concerns upper-embeddable graphs (i.e., embedded graphs with at most two facial walks), this result is more general and effective in the case of (sparse) graphs permitting relative small-degree vertices. We also obtain a similar formula for maximum nonorientable genus embeddings for general graphs. If we apply our orientable results to the current graph Gs of K12s+7, then Gs has at least 23s distinct MGE’s.This implies that K12s+7 has at least (22)s nonisomorphic cyclic oriented triangular embeddings for sufficient large s.
引用
收藏
页码:187 / 197
页数:10
相关论文
共 45 条
  • [1] Lower Bound of the Number of Maximum Genus Embeddings and Genus Embeddings of K12s+7
    Ren Han
    Gao Yanbo
    [J]. GRAPHS AND COMBINATORICS, 2011, 27 (02) : 187 - 197
  • [2] Maximum Genus Embeddings and Genus Embeddings on Orientable Surfaces
    Li, Zhaoxiang
    Ren, Han
    Si, Bingfeng
    [J]. ARS COMBINATORIA, 2013, 108 : 313 - 320
  • [3] Exponentially many maximum genus embeddings and genus embeddings for complete graphs
    Ren Han
    Bai Yun
    [J]. SCIENCE IN CHINA SERIES A-MATHEMATICS, 2008, 51 (11): : 2013 - 2019
  • [4] Exponentially many maximum genus embeddings and genus embeddings for complete graphs
    Han Ren
    Yun Bai
    [J]. Science in China Series A: Mathematics, 2008, 51 : 2013 - 2019
  • [5] Exponentially many maximum genus embeddings and genus embeddings for complete graphs
    REN Han & BAI Yun Department of Mathematics
    [J]. Science China Mathematics, 2008, (11) : 2013 - 2019
  • [6] ON THE NUMBER OF MAXIMUM GENUS EMBEDDINGS OF ALMOST ALL GRAPHS
    STAHL, S
    [J]. EUROPEAN JOURNAL OF COMBINATORICS, 1992, 13 (02) : 119 - 126
  • [7] Maximum Genus of Strong Embeddings
    Er-ling Wei
    Yan-pei Liu
    Han Ren
    [J]. Acta Mathematicae Applicatae Sinica, English Series, 2003, 19 (3): : 437 - 446
  • [8] Maximum Genus of Strong Embeddings
    Er-ling Wei
    [J]. Acta Mathematicae Applicatae Sinica, 2003, (03) : 437 - 446
  • [9] MAXIMUM GENUS EMBEDDINGS OF LATIN SQUARES
    Griggs, Terry S.
    Psomas, Constantinos
    Siran, Jozef
    [J]. GLASGOW MATHEMATICAL JOURNAL, 2018, 60 (02) : 495 - 504
  • [10] Maximum genus embeddings of Steiner triple systems
    Grannell, MJ
    Griggs, TS
    Sirán, J
    [J]. EUROPEAN JOURNAL OF COMBINATORICS, 2005, 26 (3-4) : 401 - 416