Prediction of Kinematic Viscosities of Biodiesels Derived from Edible and Non-edible Vegetable Oils by Using Artificial Neural Networks

被引:0
|
作者
Tanzer Eryilmaz
Murat Kadir Yesilyurt
Alper Taner
Sadiye Ayse Celik
机构
[1] Bozok University,Department of Biosystems Engineering, Faculty of Engineering
[2] Ondokuz Mayıs University,Architecture
[3] Selcuk University,Department of Agricultural Machinery, Faculty of Agriculture
关键词
Wild mustard (; L.); Safflower (; L.); Fuel property; Kinematic viscosity; Prediction; Artificial neural network (ANN);
D O I
暂无
中图分类号
学科分类号
摘要
In the present study, the seeds named as wild mustard (Sinapis arvensis L.) and safflower (Carthamus tinctorius L.) were used as feedstocks for production of biodiesels. In order to obtain wild mustard seed oil (WMO) and safflower seed oil (SO), screw press apparatus was used. wild mustard seed oil biodiesel (WMOB) and safflower seed oil biodiesel (SOB) were produced using methanol and NaOH by transesterification process. Various properties of these biodiesels such as density (883.62–886.35 kgm-3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\rm kg\,\rm m}^{-3}}$$\end{document}), specific gravity (0.88442–0.88709), kinematic viscosity (5.75–4.11 mm2s-1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\rm mm}^{2}\,{\rm s}^{-1}}$$\end{document}), calorific value (40.63–38.97 MJkg-1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\rm MJ\,\rm kg}^{-1}}$$\end{document}), flash point (171–175∘C\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${175\,^{\circ}{\rm C}}$$\end{document}), water content (328.19–412.15 mgkg-1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\rm mg\,\rm kg}^{-1}}$$\end{document}), color (2.0–1.8), cloud point [5.8–(-4.7)∘C]\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${(-4.7)\,^{\circ}{\rm C}]}$$\end{document}, pour point [(–3.1)–(–13.1)∘C)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\,^{\circ}{\rm C})}$$\end{document}, cold filter plugging point [(−2.0)–(-9.0)∘C)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${(-9.0)\,^{\circ}{\rm C})}$$\end{document}], copper strip corrosion (1a–1a) and pH (7.831–7.037) were determined. Furthermore, kinematic viscosities of biodiesels and euro-diesel (ED) were measured at 298.15–373.15 K intervals with 1 K increments. Four different equations were used to predict the viscosities of fuels. Regression analyses were done in MATLAB program, and R2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${R^{2}}$$\end{document}, correlation constants and root-mean-square error were determined. 1–7–7–3 artificial neural network (ANN) model with a back propagation learning algorithm was developed to predict the viscosities of fuels. The performance of neural network-based model was compared with the performance of viscosity prediction models using same observed data. It was found that ANN model consistently gave better predictions (0.9999 R2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${R^{2}}$$\end{document} values for all fuels) compared to these models. ANN model was showed 0.34 % maximum errors. Based on the results of this study, ANNs appear to be a promising technique for predicting viscosities of biodiesels.
引用
收藏
页码:3745 / 3758
页数:13
相关论文
共 50 条
  • [1] Prediction of Kinematic Viscosities of Biodiesels Derived from Edible and Non-edible Vegetable Oils by Using Artificial Neural Networks
    Eryilmaz, Tanzer
    Yesilyurt, Murat Kadir
    Taner, Alper
    Celik, Sadiye Ayse
    [J]. ARABIAN JOURNAL FOR SCIENCE AND ENGINEERING, 2015, 40 (12) : 3745 - 3758
  • [2] Optimization of biodiesel production from edible and non-edible vegetable oils
    Patil, Prafulla D.
    Deng, Shuguang
    [J]. FUEL, 2009, 88 (07) : 1302 - 1306
  • [3] Blends of biodiesels synthesized from non-edible and edible oils: Influence on the OS (oxidation stability)
    Sarin, Amit
    Arora, Rajneesh
    Singh, N. P.
    Sarin, Rakesh
    Malhotra, R. K.
    [J]. ENERGY, 2010, 35 (08) : 3449 - 3453
  • [4] Blends of Biodiesels Synthesized from Non-edible and Edible Oils: Effects on the Cold Filter Plugging Point
    Sarin, Amit
    Arora, Rajneesh
    Singh, N. P.
    Sarin, Rakesh
    Malhotra, R. K.
    Sarin, Shruti
    [J]. ENERGY & FUELS, 2010, 24 (03) : 1996 - 2001
  • [5] Synthesis of biodiesel from edible and non-edible oils and characterisation
    Kapilan, N.
    Babu, T. P. Ashok
    Varun, J. D.
    [J]. JOURNAL OF THE ENERGY INSTITUTE, 2009, 82 (04) : 242 - 243
  • [6] Study of an Innovative Process for the Production of Biofuels using Non-edible Vegetable Oils
    Romero, Max J. A.
    Pizzi, Andrea
    Toscano, Giuseppe
    Bosio, Barbara
    Arato, Elisabetta
    [J]. ICONBM: INTERNATIONAL CONFERENCE ON BIOMASS, PTS 1 AND 2, 2014, 37 : 883 - +
  • [7] Metal phosphide catalysts for the hydrotreatment of non-edible vegetable oils
    Consuelo Alvarez-Galvan, M.
    Blanco-Brieva, Gema
    Capel-Sanchez, Maricarmen
    Morales-delaRosa, Silvia
    Campos-Martin, Jose M.
    Fierro, Jose L. G.
    [J]. CATALYSIS TODAY, 2018, 302 : 242 - 249
  • [8] Ethyl biodiesels derived from non-edible oils within the biorefinery concept - Pilot scale production & engine emissions
    Nitiema-Yefanova, Svitlana
    Tschamber, Valerie
    Richard, Romain
    Thiebaud-Roux, Sophie
    Bouyssiere, Brice
    Bonzi-Coulibaly, Yvonne L.
    Nebie, Roger H. C.
    Coniglio, Lucie
    [J]. RENEWABLE ENERGY, 2017, 109 : 634 - 645
  • [9] Estimation of dynamic viscosities of vegetable oils using artificial neural networks
    Aksoy, Fatih
    Yabanova, Ismail
    Bayrakceken, Huseyin
    [J]. INDIAN JOURNAL OF CHEMICAL TECHNOLOGY, 2011, 18 (03) : 227 - 233
  • [10] Biodiesel production from non-edible plant oils
    Demirbas, Ayhan
    Bafail, Abdullah
    Ahmad, Waqar
    Sheikh, Manzoor
    [J]. ENERGY EXPLORATION & EXPLOITATION, 2016, 34 (02) : 290 - 318