Generalization of Philippin’s results for the first Robin eigenvalue and estimates for eigenvalues of the bi-drifting Laplacian

被引:0
|
作者
Abdolhakim Shouman
机构
[1] Université de Tours,Laboratoire de Mathématiques et Physique Théorique, CNRS
来源
关键词
Drifting Laplacian; Bakry–Émery curvature; Lower bounds; Robin boundary condition; Neumann problem; Riemannian manifolds; Convex boundary; Reilly’s formula; Bi-drifting Laplacian; 35P15; 35J05; 35J25; 53C21; 58C40;
D O I
暂无
中图分类号
学科分类号
摘要
In the present paper, we first consider the weighted eigenvalue problem Δfu=λfu\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Delta _f u=\lambda _{f}u$$\end{document} in M with the Robin boundary condition ∂u∂ν+βu=0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\frac{\partial u}{\partial \nu }+\beta u=0$$\end{document} on ∂M\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\partial M$$\end{document}, where (Mn,g,e-f)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(M^n,g,e^{-f})$$\end{document} is a compact n-dimensional weighted Riemannian manifold of nonnegative Bakry–Émery Ricci curvature. We derive under some convexity condition of the boundary ∂M\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\partial M$$\end{document}, an explicit lower bound of the first weighted Robin eigenvalue λ1,f(β)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\lambda _{1,f}(\beta )$$\end{document} depending only on the geometry of M and the constant β\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\beta $$\end{document} appearing in the boundary condition. Another new estimate for λ1,f(β)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\lambda _{1,f}(\beta )$$\end{document} with respect to the first nonzero Neumann eigenvalue μ2,f\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mu _{2,f}$$\end{document} of the weighted Laplacian Δf\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Delta _f$$\end{document} is also obtained. Furthermore, we provide some lower bounds for the first buckling and clamped plate eigenvalues of the bi-drifting Laplacian on weighted manifolds.
引用
收藏
页码:805 / 817
页数:12
相关论文
共 15 条
  • [1] Generalization of Philippin's results for the first Robin eigenvalue and estimates for eigenvalues of the bi-drifting Laplacian
    Shouman, Abdolhakim
    [J]. ANNALS OF GLOBAL ANALYSIS AND GEOMETRY, 2019, 55 (04) : 805 - 817
  • [2] Estimates for eigenvalues of the bi-drifting Laplacian operator
    Du, Feng
    Wu, Chuanxi
    Li, Guanghan
    Xia, Changyu
    [J]. ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2015, 66 (03): : 703 - 726
  • [3] Estimates for eigenvalues of the bi-drifting Laplacian operator
    Feng Du
    Chuanxi Wu
    Guanghan Li
    Changyu Xia
    [J]. Zeitschrift für angewandte Mathematik und Physik, 2015, 66 : 703 - 726
  • [4] Estimates for the eigenvalues of the bi-drifting Laplacian on cigar soliton
    Li, Xinyang
    Xiong, Xin
    Zeng, Lingzhong
    [J]. JOURNAL OF GEOMETRY AND PHYSICS, 2019, 145
  • [5] Sharp lower bounds for the first eigenvalues of the bi-drifting Laplacian
    Bezerra, Adriano Cavalcante
    Xia, Changyu
    [J]. DIFFERENTIAL GEOMETRY AND ITS APPLICATIONS, 2020, 68
  • [6] ESTIMATES FOR EIGENVALUES OF A SYSTEM OF ELLIPTIC EQUATIONS WITH DRIFT AND OF BI-DRIFTING LAPLACIAN
    Du, Feng
    Bezerra, Adriano Cavalcante
    [J]. COMMUNICATIONS ON PURE AND APPLIED ANALYSIS, 2017, 16 (02) : 475 - 491
  • [7] Estimates for the eigenvalues of the bi-drifting Laplacian on complete metric measure spaces
    Zeng, Lingzhong
    [J]. JOURNAL OF MATHEMATICAL PHYSICS, 2020, 61 (10)
  • [8] Eigenvalues of the bi-drifting Laplacian on the complete noncompact Riemannian manifolds
    Li, Xinyang
    Mao, Jing
    Zeng, Lingzhong
    [J]. ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2022, 73 (06):
  • [9] Eigenvalues of the bi-drifting Laplacian on the complete noncompact Riemannian manifolds
    Xinyang Li
    Jing Mao
    Lingzhong Zeng
    [J]. Zeitschrift für angewandte Mathematik und Physik, 2022, 73
  • [10] LOWER ORDER EIGENVALUES FOR THE BI-DRIFTING LAPLACIAN ON THE GAUSSIAN SHRINKING SOLITON
    Zeng, Lingzhong
    [J]. JOURNAL OF THE KOREAN MATHEMATICAL SOCIETY, 2020, 57 (06) : 1471 - 1484