Melatonin increased maize (Zea mays L.) seedling drought tolerance by alleviating drought-induced photosynthetic inhibition and oxidative damage

被引:0
|
作者
Jun Ye
Shiwen Wang
Xiping Deng
Lina Yin
Binglin Xiong
Xinyue Wang
机构
[1] Chinese Academy of Science/Northwest A&F University,State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Institute of Soil and Water Conservation
[2] University of Chinese Academy of Sciences,undefined
来源
关键词
Antioxidant activity; Drought tolerance; Melatonin; Photosynthesis; Oxidative damage; Water status;
D O I
暂无
中图分类号
学科分类号
摘要
The effect of melatonin application on enhancing plant stress tolerance is already known, but the specifics of its performance and its underlying mechanism are still poorly understood. The influences of foliar-sprayed melatonin (100 μmol/L) on maize (Zea mays L.) seedlings growth during drought stress were investigated in this study. The growth of seedlings was not affected by melatonin application under normal conditions. After 8 days of drought stress, growth was significantly inhibited, but this inhibition was alleviated by foliar-spraying with melatonin. After rehydration, melatonin-treated plants recovered more quickly than untreated plants. Further investigation showed that, under drought condition, melatonin-treated plants showed higher photosynthetic rates, stomatal conductances and transpiration rates than those untreated plants. Compared with untreated plants, the melatonin-treated plants exhibited low osmotic potential under drought stress, which contributed to the maintenance of high turgor potential and relative water content. Drought stress induced the accumulation of hydrogen peroxide and malondialdehyde, but the accumulation was decreased by melatonin application. Also, both enzymatic and nonenzymatic antioxidant activity were enhanced by melatonin application under drought stress. These results imply that the effects of melatonin on enhancing drought tolerance can be ascribed to the alleviation of drought-induced photosynthetic inhibition, improvement in plant water status, and mitigation of drought-induced oxidative damage. The results suggest that melatonin could be considered as a potential plant growth regulator for the improvement of crop drought tolerance in crop production.
引用
收藏
相关论文
共 50 条
  • [1] Melatonin increased maize (Zea mays L.) seedling drought tolerance by alleviating drought-induced photosynthetic inhibition and oxidative damage
    Ye, Jun
    Wang, Shiwen
    Deng, Xiping
    Yin, Lina
    Xiong, Binglin
    Wang, Xinyue
    ACTA PHYSIOLOGIAE PLANTARUM, 2016, 38 (02) : 1 - 13
  • [2] Maize (Zea mays L.) landraces classified by drought stress tolerance at the seedling stage
    Gonzalez-Hernandez, Victor A.
    Lugo-Cruz, Eleazar
    Mendoza-Onofre, Leopoldo E.
    Santacruz-Varela, Amalio
    Alejandra Gutierrez-Espinosa, Ma
    Zavala-Garcia, Francisco
    EMIRATES JOURNAL OF FOOD AND AGRICULTURE, 2021, 33 (01): : 29 - 36
  • [3] Melatonin Alleviates Drought-Induced Damage of Photosynthetic Apparatus in Maize Seedlings
    Guo, Y. Y.
    Li, H. J.
    Liu, J.
    Bai, Y. W.
    Xue, J. Q.
    Zhang, R. H.
    RUSSIAN JOURNAL OF PLANT PHYSIOLOGY, 2020, 67 (02) : 312 - 322
  • [4] Melatonin Alleviates Drought-Induced Damage of Photosynthetic Apparatus in Maize Seedlings
    Y. Y. Guo
    H. J. Li
    J. Liu
    Y. W. Bai
    J. Q. Xue
    R. H. Zhang
    Russian Journal of Plant Physiology, 2020, 67 : 312 - 322
  • [5] Physiological markers for drought tolerance in maize (Zea mays L.)
    Zarco-Perelló, E
    González-Hernández, VA
    López-Peralta, MC
    Salinas-Moreno, Y
    AGROCIENCIA, 2005, 39 (05) : 517 - 528
  • [6] Evaluation of oxidative stress tolerance in maize (Zea mays L.) seedlings in response to drought
    Chugh, Vishal
    Kaur, Narinder
    Gupta, Anil K.
    INDIAN JOURNAL OF BIOCHEMISTRY & BIOPHYSICS, 2011, 48 (01): : 47 - 53
  • [7] Physiological and transcriptomic analyses of the effects of exogenous melatonin on drought tolerance in maize (Zea mays L.)
    Zhao, Chengfeng
    Yang, Mei
    Wu, Xi
    Wang, Yifan
    Zhang, Renhe
    PLANT PHYSIOLOGY AND BIOCHEMISTRY, 2021, 168 : 128 - 142
  • [8] Genetics of drought tolerance at seedling and maturity stages in Zea mays L.
    Khan, Nazar H.
    Ahsan, Muhammad
    Naveed, Muhammad
    Sadaqat, Hafeez A.
    Javed, Imran
    SPANISH JOURNAL OF AGRICULTURAL RESEARCH, 2016, 14 (03)
  • [9] Screening for Drought Tolerance in Maize (Zea mays L.) Germplasm Using Germination and Seedling Traits under Simulated Drought Conditions
    Badr, Abdelfattah
    El-Shazly, Hanaa H.
    Tarawneh, Rasha A.
    Boerner, Andreas
    PLANTS-BASEL, 2020, 9 (05):
  • [10] Are chlorophyll fluorescence and photosynthetic capacity potential physiological determinants of drought tolerance in maize (Zea mays L.)
    Ashraf, Muhammad
    Nawazish, Shamyla
    Athar, Habib-Ur-Rehman
    PAKISTAN JOURNAL OF BOTANY, 2007, 39 (04) : 1123 - 1131