Machine-learning based exploration of determinants of gray matter volume in the KORA-MRI study

被引:0
|
作者
Franziska Galiè
Susanne Rospleszcz
Daniel Keeser
Ebba Beller
Ben Illigens
Roberto Lorbeer
Sergio Grosu
Sonja Selder
Sigrid Auweter
Christopher L. Schlett
Wolfgang Rathmann
Lars Schwettmann
Karl-Heinz Ladwig
Jakob Linseisen
Annette Peters
Fabian Bamberg
Birgit Ertl-Wagner
Sophia Stoecklein
机构
[1] University Hospital,Department of Radiology
[2] LMU Munich,Department of Diagnostic and Interventional Radiology, Medical Center
[3] Dresden International University, University of Freiburg, Faculty of Medicine
[4] Division of Health Care Sciences,undefined
[5] Center for Clinical Research and Management Education,undefined
[6] Institute of Epidemiology,undefined
[7] Helmholtz Zentrum München,undefined
[8] German Research Center for Environmental Health,undefined
[9] Department of Psychiatry,undefined
[10] University Hospital,undefined
[11] LMU Munich,undefined
[12] Munich Center for Neurosciences (MCN),undefined
[13] LMU,undefined
[14] Department of Diagnostic and Interventional Radiology,undefined
[15] Rostock University Medical Center,undefined
[16] Beth Israel Deaconess Medical Center,undefined
[17] Boston,undefined
[18] German Centre for Cardiovascular Research (DZHK e.V.),undefined
[19] University of Freiburg,undefined
[20] Division of Cardiothoracic Imaging,undefined
[21] University Heart Center Freiburg - Bad Krozingen,undefined
[22] German Center for Diabetes Research (DZD),undefined
[23] Institute for Biometrics and Epidemiology,undefined
[24] German Diabetes Center,undefined
[25] Institute of Health Economics and Health Care Management,undefined
[26] Helmholtz Zentrum München,undefined
[27] German Research Center for Environmental Health,undefined
[28] Department for Psychosomatic Medicine and Psychotherapy,undefined
[29] Klinikum Rechts der Isar,undefined
[30] Technische Universität München,undefined
[31] Chair of Epidemiology,undefined
[32] Ludwig-Maximilians-University München,undefined
[33] UNIKA-T Augsburg,undefined
[34] Independent Research Group Clinical Epidemiology,undefined
[35] Helmholtz Zentrum München,undefined
[36] German Research Center for Environmental Health,undefined
[37] Chair of Epidemiology,undefined
[38] Ludwig-Maximilians-University München,undefined
[39] Department of Radiology,undefined
[40] The Hospital for Sick Children,undefined
[41] University of Toronto,undefined
来源
关键词
D O I
暂无
中图分类号
学科分类号
摘要
To identify the most important factors that impact brain volume, while accounting for potential collinearity, we used a data-driven machine-learning approach. Gray Matter Volume (GMV) was derived from magnetic resonance imaging (3T, FLAIR) and adjusted for intracranial volume (ICV). 93 potential determinants of GMV from the categories sociodemographics, anthropometric measurements, cardio-metabolic variables, lifestyle factors, medication, sleep, and nutrition were obtained from 293 participants from a population-based cohort from Southern Germany. Elastic net regression was used to identify the most important determinants of ICV-adjusted GMV. The four variables age (selected in each of the 1000 splits), glomerular filtration rate (794 splits), diabetes (323 splits) and diabetes duration (122 splits) were identified to be most relevant predictors of GMV adjusted for intracranial volume. The elastic net model showed better performance compared to a constant linear regression (mean squared error = 1.10 vs. 1.59, p < 0.001). These findings are relevant for preventive and therapeutic considerations and for neuroimaging studies, as they suggest to take information on metabolic status and renal function into account as potential confounders.
引用
收藏
相关论文
共 50 条
  • [1] Machine-learning based exploration of determinants of gray matter volume in the KORA-MRI study
    Galie, Franziska
    Rospleszcz, Susanne
    Keeser, Daniel
    Beller, Ebba
    Illigens, Ben
    Lorbeer, Roberto
    Grosu, Sergio
    Selder, Sonja
    Auweter, Sigrid
    Schlett, Christopher L.
    Rathmann, Wolfgang
    Schwettmann, Lars
    Ladwig, Karl-Heinz
    Linseisen, Jakob
    Peters, Annette
    Bamberg, Fabian
    Ertl-Wagner, Birgit
    Stoecklein, Sophia
    [J]. SCIENTIFIC REPORTS, 2020, 10 (01)
  • [2] Association between Adipose Tissue Depots and Dyslipidemia: The KORA-MRI Population-Based Study
    von Kruechten, Ricarda
    Lorbeer, Roberto
    Mueller-Peltzer, Katharina
    Rospleszcz, Susanne
    Storz, Corinna
    Askani, Esther
    Kulka, Charlotte
    Schuppert, Christopher
    Rathmann, Wolfgang
    Peters, Annette
    Bamberg, Fabian
    Schlett, Christopher L.
    Mujaj, Blerim
    [J]. NUTRIENTS, 2022, 14 (04)
  • [3] A study of MRI-based machine-learning methods for glioma grading
    Wang, Z.
    Xiao, X.
    He, K.
    Wu, D.
    Pang, P.
    Wu, T.
    [J]. INTERNATIONAL JOURNAL OF RADIATION RESEARCH, 2022, 20 (01): : 115 - 120
  • [4] MRI radiomics based machine learning model of the periaqueductal gray matter in migraine patients
    Mese, Ismail
    Karaci, Rahsan
    Altintas Taslicay, Ceylan
    Taslicay, Cengizhan
    Akansel, Gur
    Domac, Saime Fusun
    [J]. IDEGGYOGYASZATI SZEMLE-CLINICAL NEUROSCIENCE, 2024, 77 (1-2): : 39 - 49
  • [5] Associated factors of white matter hyperintensity volume: a machine-learning approach
    Grosu, Sergio
    Rospleszcz, Susanne
    Hartmann, Felix
    Habes, Mohamad
    Bamberg, Fabian
    Schlett, Christopher L.
    Galie, Franziska
    Lorbeer, Roberto
    Auweter, Sigrid
    Selder, Sonja
    Buelow, Robin
    Heier, Margit
    Rathmann, Wolfgang
    Mueller-Peltzer, Katharina
    Ladwig, Karl-Heinz
    Grabe, Hans J.
    Peters, Annette
    Ertl-Wagner, Birgit B.
    Stoecklein, Sophia
    [J]. SCIENTIFIC REPORTS, 2021, 11 (01)
  • [6] Associated factors of white matter hyperintensity volume: a machine-learning approach
    Sergio Grosu
    Susanne Rospleszcz
    Felix Hartmann
    Mohamad Habes
    Fabian Bamberg
    Christopher L. Schlett
    Franziska Galie
    Roberto Lorbeer
    Sigrid Auweter
    Sonja Selder
    Robin Buelow
    Margit Heier
    Wolfgang Rathmann
    Katharina Mueller-Peltzer
    Karl-Heinz Ladwig
    Hans J. Grabe
    Annette Peters
    Birgit B. Ertl-Wagner
    Sophia Stoecklein
    [J]. Scientific Reports, 11
  • [7] Migraine and MRI Radiomics-Based Machine Learning Model for Periaqueductal Gray Matter Evaluation
    Mese, Ismail
    Domac, Saime Fusun Mayda
    Karaci, Rahsan
    Taslicay, Ceylan Altintas
    [J]. CEPHALALGIA, 2023, 43 (1supp) : 75 - 75
  • [8] Determinants of Deep Gray Matter Atrophy in Multiple Sclerosis: A Multimodal MRI Study
    Pontillo, G.
    Cocozza, S.
    Lanzillo, R.
    Russo, C.
    Stasi, M. D.
    Paolella, C.
    Vola, E. A.
    Criscuolo, C.
    Borrelli, P.
    Palma, G.
    Tedeschi, E.
    Morra, V. B.
    Elefante, A.
    Brunetti, A.
    [J]. AMERICAN JOURNAL OF NEURORADIOLOGY, 2019, 40 (01) : 99 - 106
  • [9] Altered Regional Gray Matter Volume in Obese Men: A Structural MRI Study
    Zhang, Bin
    Tian, Xiao
    Tian, Derun
    Wang, Jinhong
    Wang, Qiming
    Yu, Chunshui
    Li, Chunbo
    Wang, Jijun
    [J]. FRONTIERS IN PSYCHOLOGY, 2017, 8
  • [10] Application Value of Machine Learning Method in Measuring Gray Matter Volume of AIDS Patients
    Fu, Danhui
    Mo, Kai
    Deng, Wenjuan
    Zhao, Yang
    Ding, QianLin
    Hong, Sen
    Zhang, Wei
    Su, Danke
    [J]. DISEASE MARKERS, 2022, 2022