Nanopore DNA Sequencing and Genome Assembly on the International Space Station

被引:0
|
作者
Sarah L. Castro-Wallace
Charles Y. Chiu
Kristen K. John
Sarah E. Stahl
Kathleen H. Rubins
Alexa B. R. McIntyre
Jason P. Dworkin
Mark L. Lupisella
David J. Smith
Douglas J. Botkin
Timothy A. Stephenson
Sissel Juul
Daniel J. Turner
Fernando Izquierdo
Scot Federman
Doug Stryke
Sneha Somasekar
Noah Alexander
Guixia Yu
Christopher E. Mason
Aaron S. Burton
机构
[1] NASA Johnson Space Center,Biomedical Research and Environmental Sciences Division
[2] University of California San Francisco,Department of Laboratory Medicine
[3] UCSF-Abbott Viral Diagnostics and Discovery Center,NASA Postdoctoral Program
[4] NASA Johnson Space Center,Astronaut Office
[5] JES Tech,Department of Physiology and Biophysics
[6] NASA Johnson Space Center,Solar System Exploration Division
[7] Weill Cornell Medicine,Exploration Systems Projects Office
[8] NASA Goddard Space Flight Center,Space Biosciences Division
[9] NASA Goddard Space Flight Center,Applied Engineering and Technology Directorate
[10] NASA Ames Research Center,The HRH Prince Alwaleed Bin Talal Bin Abdulaziz Alsaud Institute for Computational Biomedicine
[11] Formerly JES Tech,The Feil Family Brain and Mind Research Institute
[12] NASA Goddard Space Flight Center,Astromaterials Research and Exploration Science Division
[13] Oxford Nanopore Technologies,undefined
[14] Weill Cornell Medicine,undefined
[15] Weill Cornell Medicine,undefined
[16] NASA Johnson Space Center,undefined
来源
关键词
D O I
暂无
中图分类号
学科分类号
摘要
We evaluated the performance of the MinION DNA sequencer in-flight on the International Space Station (ISS), and benchmarked its performance off-Earth against the MinION, Illumina MiSeq, and PacBio RS II sequencing platforms in terrestrial laboratories. Samples contained equimolar mixtures of genomic DNA from lambda bacteriophage, Escherichia coli (strain K12, MG1655) and Mus musculus (female BALB/c mouse). Nine sequencing runs were performed aboard the ISS over a 6-month period, yielding a total of 276,882 reads with no apparent decrease in performance over time. From sequence data collected aboard the ISS, we constructed directed assemblies of the ~4.6 Mb E. coli genome, ~48.5 kb lambda genome, and a representative M. musculus sequence (the ~16.3 kb mitochondrial genome), at 100%, 100%, and 96.7% consensus pairwise identity, respectively; de novo assembly of the E. coli genome from raw reads yielded a single contig comprising 99.9% of the genome at 98.6% consensus pairwise identity. Simulated real-time analyses of in-flight sequence data using an automated bioinformatic pipeline and laptop-based genomic assembly demonstrated the feasibility of sequencing analysis and microbial identification aboard the ISS. These findings illustrate the potential for sequencing applications including disease diagnosis, environmental monitoring, and elucidating the molecular basis for how organisms respond to spaceflight.
引用
收藏
相关论文
共 50 条
  • [1] Nanopore DNA Sequencing and Genome Assembly on the International Space Station
    Castro-Wallace, Sarah L.
    Chiu, Charles Y.
    John, Kristen K.
    Stahl, Sarah E.
    Rubins, Kathleen H.
    McIntyre, Alexa B. R.
    Dworkin, Jason P.
    Lupisella, Mark L.
    Smith, David J.
    Botkin, Douglas J.
    Stephenson, Timothy A.
    Juul, Sissel
    Turner, Daniel J.
    Izquierdo, Fernando
    Federman, Scot
    Stryke, Doug
    Somasekar, Sneha
    Alexander, Noah
    Yu, Guixia
    Mason, Christopher E.
    Burton, Aaron S.
    [J]. SCIENTIFIC REPORTS, 2017, 7
  • [2] A first genome assembly for nanopore sequencing
    Naomi Attar
    [J]. Nature Reviews Microbiology, 2015, 13 (8) : 459 - 459
  • [3] Oxford Nanopore MinION Sequencing and Genome Assembly
    Hengyun Lu
    Francesca Giordano
    Zemin Ning
    [J]. Genomics,Proteomics & Bioinformatics, 2016, 14 (05) : 265 - 279
  • [4] Oxford Nanopore MinION Sequencing and Genome Assembly
    Lu, Hengyun
    Giordano, Francesca
    Ning, Zemin
    [J]. GENOMICS PROTEOMICS & BIOINFORMATICS, 2016, 14 (05) : 265 - 279
  • [5] Oxford Nanopore MinION Sequencing and Genome Assembly
    Hengyun Lu
    Francesca Giordano
    Zemin Ning
    [J]. Genomics,Proteomics & Bioinformatics., 2016, (05) - 279
  • [6] Detection and assembly of extrachromosomal DNA in tumors with nanopore sequencing
    Aganezov, Sergey
    Beaulaurier, John
    Harrington, Eoghan
    Juul, Sissel
    [J]. CANCER RESEARCH, 2022, 82 (12)
  • [7] International Space Station assembly sequence
    Spencer, R
    [J]. STRENGTHENING COOPERATION IN THE 21ST CENTURY, 1996, 91 : 631 - 648
  • [8] MinION nanopore sequencing and assembly of a complete human papillomavirus genome
    Brancaccio, Rosario N.
    Robitaille, Alexis
    Dutta, Sankhadeep
    Rollison, Dana E.
    Tommasino, Massimo
    Gheit, Tarik
    [J]. JOURNAL OF VIROLOGICAL METHODS, 2021, 294
  • [9] Nanopore sequencing and assembly of a human genome with ultra-long reads
    Miten Jain
    Sergey Koren
    Karen H Miga
    Josh Quick
    Arthur C Rand
    Thomas A Sasani
    John R Tyson
    Andrew D Beggs
    Alexander T Dilthey
    Ian T Fiddes
    Sunir Malla
    Hannah Marriott
    Tom Nieto
    Justin O'Grady
    Hugh E Olsen
    Brent S Pedersen
    Arang Rhie
    Hollian Richardson
    Aaron R Quinlan
    Terrance P Snutch
    Louise Tee
    Benedict Paten
    Adam M Phillippy
    Jared T Simpson
    Nicholas J Loman
    Matthew Loose
    [J]. Nature Biotechnology, 2018, 36 : 338 - 345
  • [10] Nanopore sequencing and assembly of a human genome with ultra-long reads
    Jain, Miten
    Koren, Sergey
    Miga, Karen H.
    Quick, Josh
    Rand, Arthur C.
    Sasani, Thomas A.
    Tyson, John R.
    Beggs, Andrew D.
    Dilthey, Alexander T.
    Fiddes, Ian T.
    Malla, Sunir
    Marriott, Hannah
    Nieto, Tom
    O'Grady, Justin
    Olsen, Hugh E.
    Pedersen, Brent S.
    Rhie, Arang
    Richardson, Hollian
    Quinlan, Aaron R.
    Snutch, Terrance P.
    Tee, Louise
    Paten, Benedict
    Phillippy, Adam M.
    Simpson, Jared T.
    Loman, Nicholas J.
    Loose, Matthew
    [J]. NATURE BIOTECHNOLOGY, 2018, 36 (04) : 338 - +