共 1 条
A comparative study of non-thermal parameters of the X-class solar flare plasma obtained from cold and warm thick-target models; error estimation by Monte Carlo simulation method
被引:0
|作者:
Pramod Kumar
R. K. Choudhary
P. Sampathkumaran
Subhayan Mandal
机构:
[1] S. S. Jain Subodh P. G. (Autonomous) College,Department of Physics
[2] ISRO,Space Physics Laboratory, Vikram Sarabhai Space Centre
[3] Sambhram Institute of Technology,Department of Physics
[4] Malaviya National Institute of Technology Jaipur,undefined
来源:
关键词:
Solar X-class flares;
Low-energy cutoff;
Cold-target model;
Warm-target model;
Monte Carlo method;
D O I:
暂无
中图分类号:
学科分类号:
摘要:
The electron transport and relaxation in the non-thermal plasma of solar flare are often described by cold thick-target model. Recently introduced warm thick-target model however is also found to be more consistent for describing it and hence provide the accurate estimate of parameters of non-thermal solar flare plasma. In this study, we evaluate the consistency of cold and warm thick-target models by estimating non-thermal parameters viz., low-energy cutoff (Ec/Ewc\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}${E_{c}/E_{wc}} $\end{document}), kinetic power of non-thermal electrons (Pnth/Pwnth\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}${P _{nth}/P_{wnth}} $\end{document}) and non-thermal energy (Enth/Ewnth\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}${E_{nth}/E_{wnth}} $\end{document}), along with standard error (SE) and their linear statistical analysis with respect to flare duration (tf\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}${t _{f}}$\end{document}). We further evaluate the accuracy of these parameters using Monte Carlo simulation data in 2σ\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$2 \sigma $\end{document} limits. We found that cold thick-target model gives high values of mean and SE of the estimated parameters compare to warm thick-target model those were also found consistent with the Monte Carlo data (in both cases). Here, we also found that the variation of Ec/Ewc\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}${E_{c}/E_{wc}} $\end{document} and Pnth/Pwnth\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}${P _{nth}/P_{wnth}} $\end{document} with respect to tf\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}${t_{f}} $\end{document} give a negative/positive and positive values of correlation coefficient (r\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$r$\end{document}) and slope (b\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$b$\end{document}) respectively which account for upper and lower limits of Ec/Ewc\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}${E_{c}/E_{wc}} $\end{document} and high and slow rate of thermalization of non-thermal electrons. Our results show that the warm thick-target model is more consistent model compare to cold thick-target model that could also lead a multi-temperature component in the thermalized plasma.
引用
收藏
相关论文