Isochronous PDEs

被引:0
|
作者
M. Mariani
F. Calogero
机构
[1] Università di Roma “La Sapienza,Dottorato in Matematica
[2] ”,Dipartimento di Fisica
[3] Università di Roma “La Sapienza,Istituto Nazionale di Fisica Nucleare
[4] ”,undefined
[5] Sezione di Roma,undefined
来源
Physics of Atomic Nuclei | 2005年 / 68卷
关键词
Elementary Particle; Initial Data; Fixed Period; Evolution PDEs;
D O I
暂无
中图分类号
学科分类号
摘要
A number of well-known evolution PDEs a remodified so that they then possess many solutions which are isochronous, i.e., completely periodic, with a fixed period that does not depend on the initial data (for large sets of such data).
引用
收藏
页码:899 / 908
页数:9
相关论文
共 50 条
  • [1] Isochronous PDEs
    Mariani, M
    Calogero, F
    PHYSICS OF ATOMIC NUCLEI, 2005, 68 (05) : 899 - 908
  • [2] New evolution PDEs with many isochronous solutions
    Calogero, F.
    Euler, M.
    Euler, N.
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2009, 353 (02) : 481 - 488
  • [3] Isochronous Centers and Isochronous Functions
    Li-jun YangDepartment of Mathematical Sciences of Tsinghua University
    Acta Mathematicae Applicatae Sinica(English Series), 2002, (02) : 315 - 324
  • [4] Isochronous centers and isochronous functions
    Yang L.-J.
    Acta Mathematicae Applicatae Sinica, 2002, 18 (2) : 315 - 324
  • [5] From isochronous potentials to isochronous systems
    Sfecci, Andrea
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2015, 258 (05) : 1791 - 1800
  • [6] Characterizing isochronous points and computing isochronous sections
    Algaba, A.
    Reyes, M.
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2009, 355 (02) : 564 - 576
  • [7] Isochronous and partially isochronous Hamiltonian systems are not rare
    Calogero, F
    Leyvraz, F
    JOURNAL OF MATHEMATICAL PHYSICS, 2006, 47 (04)
  • [8] A class of isochronous and non-isochronous nonlinear oscillators
    Parkavi, J. Ramya
    Mohanasubha, R.
    Chandrasekar, V. K.
    Senthilvelan, M.
    Lakshmanan, M.
    EUROPEAN PHYSICAL JOURNAL-SPECIAL TOPICS, 2022, 231 (11-12): : 2387 - 2399
  • [9] Isochronous and Strongly Isochronous Foci of Polynomial Lienard Systems
    Amel'kin, V. V.
    DIFFERENTIAL EQUATIONS, 2022, 58 (01) : 1 - 8
  • [10] A class of isochronous and non-isochronous nonlinear oscillators
    J. Ramya Parkavi
    R. Mohanasubha
    V. K. Chandrasekar
    M. Senthilvelan
    M. Lakshmanan
    The European Physical Journal Special Topics, 2022, 231 : 2387 - 2399