On the effect of the contact surface definition in the Cartesian grid finite element method

被引:3
|
作者
Navarro-Jiménez J.M. [1 ]
Tur M. [1 ]
Fuenmayor F.J. [1 ]
Ródenas J.J. [1 ]
机构
[1] Centro de Investigación en Ingeniería Mecánica, Departamento de Ingeniería Mecánica y de Materiales, Universidad Politécnica de Valencia, Camino de Vera s/n, Valencia
关键词
cgFEM; Contact; Immersed boundary; NURBS;
D O I
10.1186/s40323-018-0108-5
中图分类号
学科分类号
摘要
The definition of the surface plays an important role in the solution of contact problems, as the evaluation of the contact force is based on the measure of the gap between the solids. In this work three different methods to define the surface are proposed for the solution of contact problems within the framework of the 3D Cartesian grid finite element method. A stabilized formulation is used to solve the contact problem and details of the kinematic description for each surface definition are provided. The three methods are compared solving some numerical tests involving frictionless contact with finite and small deformations. © 2018, The Author(s).
引用
收藏
相关论文
共 50 条
  • [1] Superconvergent patch recovery with constraints for three-dimensional contact problems within the Cartesian grid Finite Element Method
    Navarro-Jimenez, Jose M.
    Navarro-Garcia, Hector
    Tur, Manuel
    Rodenas, Juan J.
    [J]. INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 2020, 121 (06) : 1297 - 1313
  • [2] Element Stiffness Matrix Integration in Image-Based Cartesian Grid Finite Element Method
    Giovannelli, Luca
    Rodenas, Juan J.
    Navarro-Jimenez, Jose M.
    Tur, Manuel
    [J]. COMPUTATIONAL MODELING OF OBJECTS PRESENTED IN IMAGES: FUNDAMENTALS, METHODS, AND APPLICATIONS, 2014, 8641 : 304 - 315
  • [3] A Cartesian grid nonconforming immersed finite element method for planar elasticity interface problems
    Qin, Fangfang
    Chen, Jinru
    Li, Zhilin
    Cai, Mingchao
    [J]. COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2017, 73 (03) : 404 - 418
  • [4] On the use of stabilization techniques in the Cartesian grid finite element method framework for iterative solvers
    Navarro-Jimenez, Jose Manuel
    Nadal, Enrique
    Tur, Manuel
    Martinez-Casas, Jose
    Rodenas, Juan Jose
    [J]. INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 2020, 121 (13) : 3004 - 3020
  • [5] On the use of Cartesian grid finite element code in structural optimization
    Nadal, E.
    Rodenas, J. J.
    Sanchez-Orgaz, E. M.
    Lopez-Real, S.
    Marti-Pellicer, J.
    [J]. REVISTA INTERNACIONAL DE METODOS NUMERICOS PARA CALCULO Y DISENO EN INGENIERIA, 2014, 30 (03): : 155 - 165
  • [6] A FINITE ELEMENT APPROACH TO SURFACE DEFINITION
    THROSBY, PW
    [J]. COMPUTER JOURNAL, 1969, 12 (04): : 385 - &
  • [7] Effect of surface parameters on finite element method based deterministic Gaussian rough surface contact model
    Megalingam, A.
    Mayuram, M. M.
    [J]. PROCEEDINGS OF THE INSTITUTION OF MECHANICAL ENGINEERS PART J-JOURNAL OF ENGINEERING TRIBOLOGY, 2014, 228 (12) : 1358 - 1373
  • [8] Numerical Simulation from Medical Images: Accurate Integration by Means of the Cartesian Grid Finite Element Method
    Marco, Onofre
    Sevilla, Ruben
    Jose Rodenas, Juan
    Tur, Manuel
    [J]. COMPUTATIONAL MODELING OF OBJECTS PRESENTED IN IMAGES: FUNDAMENTALS, METHODS, AND APPLICATIONS, 2014, 8641 : 255 - 260
  • [9] A finite element method for contact/impact
    Solberg, JM
    Papadopoulos, P
    [J]. FINITE ELEMENTS IN ANALYSIS AND DESIGN, 1998, 30 (04) : 297 - 311
  • [10] New Cartesian grid methods for interface problems using the finite element formulation
    Zhilin Li
    Tao Lin
    Xiaohui Wu
    [J]. Numerische Mathematik, 2003, 96 : 61 - 98