The spectral excess theorem for distance-regular graphs having distance-d graph with fewer distinct eigenvalues

被引:0
|
作者
M. A. Fiol
机构
[1] Universitat Politècnica de Catalunya,BarcelonaTech
[2] Barcelona Graduate School of Mathematics,Dept. de Matemàtiques
来源
关键词
Distance-regular graph; Kneser graph; Partial antipodality; Spectrum; Predistance polynomials; 05C50; 05E30;
D O I
暂无
中图分类号
学科分类号
摘要
Let Γ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Gamma $$\end{document} be a distance-regular graph with diameter d and Kneser graph K=Γd\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$K=\Gamma _d$$\end{document}, the distance-d graph of Γ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Gamma $$\end{document}. We say that Γ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Gamma $$\end{document} is partially antipodal when K has fewer distinct eigenvalues than Γ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Gamma $$\end{document}. In particular, this is the case of antipodal distance-regular graphs (K with only two distinct eigenvalues) and the so-called half-antipodal distance-regular graphs (K with only one negative eigenvalue). We provide a characterization of partially antipodal distance-regular graphs (among regular graphs with d+1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$d+1$$\end{document} distinct eigenvalues) in terms of the spectrum and the mean number of vertices at maximal distance d from every vertex. This can be seen as a more general version of the so-called spectral excess theorem, which allows us to characterize those distance-regular graphs which are half-antipodal, antipodal, bipartite, or with Kneser graph being strongly regular.
引用
收藏
页码:827 / 836
页数:9
相关论文
共 50 条
  • [1] The spectral excess theorem for distance-regular graphs having distance-d graph with fewer distinct eigenvalues
    Fiol, M. A.
    JOURNAL OF ALGEBRAIC COMBINATORICS, 2016, 43 (04) : 827 - 836
  • [2] Distance-regular graphs where the distance-d graph has fewer distinct eigenvalues
    Brouwer, A. E.
    Fiol, M. A.
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2015, 480 : 115 - 126
  • [3] The Laplacian spectral excess theorem for distance-regular graphs
    van Dam, E. R.
    Fiol, M. A.
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2014, 458 : 245 - 250
  • [4] A simple proof of the spectral excess theorem for distance-regular graphs
    Fiol, M. A.
    Gago, S.
    Garriga, E.
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2010, 432 (09) : 2418 - 2422
  • [5] Distance-regular graphs with small number of distinct distance eigenvalues
    Alazemi, Abdullah
    Andelic, Milica
    Koledin, Tamara
    Stanic, Zoran
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2017, 531 : 83 - 97
  • [6] The spectral excess theorem for distance-regular graphs: a global (over) view
    van Dam, Edwin R.
    ELECTRONIC JOURNAL OF COMBINATORICS, 2008, 15 (01):
  • [7] ON THE MULTIPLICITY OF EIGENVALUES OF DISTANCE-REGULAR GRAPHS
    GODSIL, CD
    KOOLEN, JH
    LINEAR ALGEBRA AND ITS APPLICATIONS, 1995, 226 : 273 - 275
  • [8] The spectral excess theorem for graphs with few eigenvalues whose distance-2 or distance-1-or-2 graph is strongly regular
    DalfO, C.
    Fiol, M. A.
    Koolen, J.
    LINEAR & MULTILINEAR ALGEBRA, 2019, 67 (12): : 2373 - 2381
  • [9] Distance-regular graphs with a few q-distance eigenvalues
    Abdullah, Mamoon
    Gebremichel, Brhane
    Hayat, Sakander
    Koolen, Jack H.
    DISCRETE MATHEMATICS, 2024, 347 (05)
  • [10] Some Results on the Eigenvalues of Distance-Regular Graphs
    Sejeong Bang
    Jack H. Koolen
    Jongyook Park
    Graphs and Combinatorics, 2015, 31 : 1841 - 1853