Nonlinear Generalized Lie Triple Higher Derivation on Triangular Algebras

被引:0
|
作者
Mohammad Ashraf
Aisha Jabeen
机构
[1] Aligarh Muslim University,Department of Mathematics
关键词
Triangular algebra; Generalized higher derivation; Generalized Lie triple higher derivation; 16W25; 15A78;
D O I
暂无
中图分类号
学科分类号
摘要
Let R\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {R}}$$\end{document} be a commutative ring with unity. A triangular algebra is an algebra of the form A=AM0B\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathfrak {A}} = \left[ \begin{array}{cc} {\mathcal {A}} &{} {\mathcal {M}} \\ 0 &{} {\mathcal {B}} \\ \end{array} \right] $$\end{document} where A\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {A}}$$\end{document} and B\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {B}}$$\end{document} are unital algebras over R\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {R}}$$\end{document} and M\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {M}}$$\end{document} is an (A,B)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$({\mathcal {A}},{\mathcal {B}})$$\end{document}-bimodule which is faithful as a left A\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {A}}$$\end{document}-module as well as a right B\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {B}}$$\end{document}-module. In this paper, we study nonlinear generalized Lie triple higher derivation on A\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathfrak {A}}$$\end{document} and show that under certain assumptions on A\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathfrak {A}}$$\end{document}, every nonlinear generalized Lie triple higher derivation on A\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathfrak {A}}$$\end{document} is of standard form, i.e., each component of a nonlinear generalized Lie triple higher derivation on A\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathfrak {A}}$$\end{document} can be expressed as the sum of an additive generalized higher derivation and a nonlinear functional vanishing on all Lie triple products on A\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathfrak {A}}$$\end{document}.
引用
收藏
页码:513 / 530
页数:17
相关论文
共 50 条
  • [1] Nonlinear Generalized Lie Triple Higher Derivation on Triangular Algebras
    Ashraf, Mohammad
    Jabeen, Aisha
    BULLETIN OF THE IRANIAN MATHEMATICAL SOCIETY, 2018, 44 (02): : 513 - 530
  • [2] Nonlinear generalized Lie triple derivation on triangular algebras
    Ashraf, Mohammad
    Jabeen, Aisha
    COMMUNICATIONS IN ALGEBRA, 2017, 45 (10) : 4380 - 4395
  • [3] Generalized Jordan Triple (σ, τ)-Higher Derivation on Triangular Algebras
    Ashraf, Mohammad
    Jabeen, Aisha
    Akhtar, Mohd Shuaib
    FILOMAT, 2019, 33 (08) : 2285 - 2294
  • [4] Nonlinear generalized Lie triple derivation on triangular algebras (vol 45, pg 4380, 2018)
    Ashraf, Mohammad
    Jabeen, Aisha
    COMMUNICATIONS IN ALGEBRA, 2018, 46 (12) : 5355 - 5355
  • [5] Triangular algebras with nonlinear higher Lie n-derivation by local actions
    Liang, Xinfeng
    Zhang, Mengya
    AIMS MATHEMATICS, 2024, 9 (02): : 2549 - 2583
  • [6] Nonlinear Lie triple derivations of triangular algebras
    Ji, Peisheng
    Liu, Rongrong
    Zhao, Yingzi
    LINEAR & MULTILINEAR ALGEBRA, 2012, 60 (10): : 1155 - 1164
  • [7] CHARACTERIZATIONS OF LIE HIGHER AND LIE TRIPLE DERIVATIONS ON TRIANGULAR ALGEBRAS
    Li, Jiankui
    Shen, Qihua
    JOURNAL OF THE KOREAN MATHEMATICAL SOCIETY, 2012, 49 (02) : 419 - 433
  • [8] Nonlinear generalized Lie derivations on triangular algebras
    Fei, Xiuhai
    Zhang, Jianhua
    LINEAR & MULTILINEAR ALGEBRA, 2017, 65 (06): : 1158 - 1170
  • [9] Nonlinear Lie higher derivations on triangular algebras
    Xiao, Zhankui
    Wei, Feng
    LINEAR & MULTILINEAR ALGEBRA, 2012, 60 (08): : 979 - 994
  • [10] Nonlinear Lie Triple Higher Derivations on Triangular Algebras by Local Actions: A New Perspective
    Liang, Xinfeng
    Ren, Dandan
    Li, Qingliu
    AXIOMS, 2022, 11 (07)