Ant colony optimization for mining gradual patterns

被引:0
|
作者
Dickson Odhiambo Owuor
Thomas Runkler
Anne Laurent
Joseph Onderi Orero
Edmond Odhiambo Menya
机构
[1] SCES Strathmore University,
[2] Siemens AG,undefined
[3] LIRMM Univ Montpellier,undefined
[4] CNRS,undefined
关键词
Ant colony optimization; Data mining; Genetic algorithm; Gradual patterns; Particle swarm optimization; Swarm intelligence;
D O I
暂无
中图分类号
学科分类号
摘要
Gradual pattern extraction is a field in Knowledge Discovery in Databases that maps correlations between attributes of a data set as gradual dependencies. A gradual dependency may take the form: “the more AttributeK\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$_{K}$$\end{document}, the less AttributeL\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$_{L}$$\end{document}”. Classical approa-ches for extracting gradual patterns extend either a breath-first search or a depth-first search strategy. However, these strategies can be computationally expensive and inefficient especially when dealing with large data sets. In this study, we investigate 3 population-based optimization techniques (i.e. ant colony optimization, genetic algorithm and particle swarm optimization) that may be employed improve the efficiency of mining gradual patterns. We show that ant colony optimization technique is better suited for gradual pattern mining task than the other 2 techniques. Through computational experiments on real-world data sets, we compared the computational performance of the proposed algorithms that implement the 3 population-based optimization techniques to classical algorithms for the task of gradual pattern mining and we show that the proposed algorithms outperform their classical counterparts.
引用
收藏
页码:2989 / 3009
页数:20
相关论文
共 50 条
  • [1] Ant colony optimization for mining gradual patterns
    Owuor, Dickson Odhiambo
    Runkler, Thomas
    Laurent, Anne
    Orero, Joseph Onderi
    Menya, Edmond Odhiambo
    [J]. INTERNATIONAL JOURNAL OF MACHINE LEARNING AND CYBERNETICS, 2021, 12 (10) : 2989 - 3009
  • [2] Mining Users Interest Navigation Patterns Using Improved Ant Colony Optimization
    Wei, Xuyang
    Wang, Yan
    Li, Zhongliang
    Zou, Tengfei
    Yang, Guocai
    [J]. INTELLIGENT AUTOMATION AND SOFT COMPUTING, 2015, 21 (03): : 445 - 454
  • [3] Data mining with an ant colony optimization algorithm
    Parpinelli, RS
    Lopes, HS
    Freitas, AA
    [J]. IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, 2002, 6 (04) : 321 - 332
  • [4] Wise Mining Method through Ant Colony Optimization
    Yang Jianxiong
    Watada, Junzo
    [J]. 2009 IEEE INTERNATIONAL CONFERENCE ON SYSTEMS, MAN AND CYBERNETICS (SMC 2009), VOLS 1-9, 2009, : 1833 - 1839
  • [5] Classification rule mining based on ant colony optimization algorithm
    Jin, Peng
    Zhu, Yunlong
    Hu, Kunyuan
    Li, Sufen
    [J]. INTELLIGENT CONTROL AND AUTOMATION, 2006, 344 : 654 - 663
  • [6] A Physarum-Inspired Ant Colony Optimization for Community Mining
    Liang, Mingxin
    Gao, Chao
    Li, Xianghua
    Zhang, Zili
    [J]. ADVANCES IN KNOWLEDGE DISCOVERY AND DATA MINING, PAKDD 2017, PT I, 2017, 10234 : 737 - 749
  • [7] Rule mining algorithm with a new ant colony optimization algorithm
    Thangavel, K.
    Jaganathan, P.
    [J]. ICCIMA 2007: INTERNATIONAL CONFERENCE ON COMPUTATIONAL INTELLIGENCE AND MULTIMEDIA APPLICATIONS, VOL II, PROCEEDINGS, 2007, : 135 - +
  • [8] An ant colony model for dynamic mining of users interest navigation patterns
    Ling, Haifeng
    Liu, Yezheng
    Yang, Shanlin
    [J]. 2007 IEEE INTERNATIONAL CONFERENCE ON CONTROL AND AUTOMATION, VOLS 1-7, 2007, : 2773 - 2775
  • [9] Ant Colony Optimization
    Katya Rodríguez Vázquez
    [J]. Genetic Programming and Evolvable Machines, 2005, 6 (4) : 459 - 460
  • [10] FCACO: Fuzzy classification rules mining algorithm with ant colony optimization
    Alatas, B
    Akin, E
    [J]. ADVANCES IN NATURAL COMPUTATION, PT 3, PROCEEDINGS, 2005, 3612 : 787 - 797