Finitely Additive Equivalent Martingale Measures

被引:0
|
作者
Patrizia Berti
Luca Pratelli
Pietro Rigo
机构
[1] Universita’ di Modena e Reggio-Emilia,Dipartimento di Matematica Pura ed Applicata “G. Vitali”
[2] Accademia Navale,Dipartimento di Economia Politica e Metodi Quantitativi
[3] Universita’ di Pavia,undefined
来源
关键词
Arbitrage; De Finetti’s coherence principle; Equivalent martingale measure; Finitely additive probability; Fundamental theorem of asset pricing; 60A05; 60A10; 28C05; 91B25; 91G10;
D O I
暂无
中图分类号
学科分类号
摘要
Let L be a linear space of real bounded random variables on the probability space \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$(\varOmega ,\mathcal{A},P_{0})$\end{document}. There is a finitely additive probability P on \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathcal{A}$\end{document} such that P∼P0 and EP(X)=0 for all X∈L if and only if cEQ(X)≤ess sup (−X), X∈L, for some constant c>0 and (countably additive) probability Q on \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathcal{A}$\end{document} such that Q∼P0. A necessary condition for such a P to exist is \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\overline{L-L_{\infty}^{+}}\cap L_{\infty}^{+}=\{0\}$\end{document}, where the closure is in the norm-topology. If P0 is atomic, the condition is sufficient as well. In addition, there is a finitely additive probability P on \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathcal{A}$\end{document} such that P≪P0 and EP(X)=0 for all X∈L if and only if ess sup (X)≥0 for all X∈L.
引用
收藏
页码:46 / 57
页数:11
相关论文
共 50 条