Let L be a linear space of real bounded random variables on the probability space \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$(\varOmega ,\mathcal{A},P_{0})$\end{document}. There is a finitely additive probability P on \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$\mathcal{A}$\end{document} such that P∼P0 and EP(X)=0 for all X∈L if and only if cEQ(X)≤ess sup (−X), X∈L, for some constant c>0 and (countably additive) probability Q on \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$\mathcal{A}$\end{document} such that Q∼P0. A necessary condition for such a P to exist is \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$\overline{L-L_{\infty}^{+}}\cap L_{\infty}^{+}=\{0\}$\end{document}, where the closure is in the norm-topology. If P0 is atomic, the condition is sufficient as well. In addition, there is a finitely additive probability P on \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$\mathcal{A}$\end{document} such that P≪P0 and EP(X)=0 for all X∈L if and only if ess sup (X)≥0 for all X∈L.