Given a directed graph G=(V,A) with a non-negative weight (length) function on its arcs w:A→ℝ+ and two terminals s,t∈V, our goal is to destroy all short directed paths from s to t in G by eliminating some arcs of A. This is known as the short paths interdiction problem. We consider several versions of it, and in each case analyze two subcases: total limited interdiction, when a fixed number k of arcs can be removed, and node-wise limited interdiction, when for each node v∈V a fixed number k(v) of out-going arcs can be removed. Our results indicate that the latter subcase is always easier than the former one. In particular, we show that the short paths node-wise interdiction problem can be efficiently solved by an extension of Dijkstra’s algorithm. In contrast, the short paths total interdiction problem is known to be NP-hard. We strengthen this hardness result by deriving the following inapproximability bounds: Given k, it is NP-hard to approximate within a factor c<2 the maximum s–t distance d(s,t) obtainable by removing (at most) k arcs from G. Furthermore, given d, it is NP-hard to approximate within a factor
\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$c<10\sqrt{5}-21\approx1.36$\end{document}
the minimum number of arcs which has to be removed to guarantee d(s,t)≥d. Finally, we also show that the same inapproximability bounds hold for undirected graphs and/or node elimination.