Implicit Gamma Theorems (I): Pseudoroots and Pseudospectra

被引:0
|
作者
机构
[1] MIP,
[2] Département de Mathématique Université Paul Sabatier 31062 Toulouse Cedex 04,undefined
[3] France dedieu@mip.ups-tlse.fr,undefined
[4] Department of Mathematics SUNY at Old Westbury Old Westbury,undefined
[5] NY 11568-0210,undefined
[6] USA kimm@oldwestbury.edu,undefined
[7] IBM T. J. Watson Research Center PO Box 218 Yorktown Heights,undefined
[8] NY 10532,undefined
[9] USA mshub@us.ibm.com,undefined
[10] Department of Mathematics University of Manchester Manchester M13 9PL,undefined
[11] England ftisseur@ma.man.ac.uk,undefined
关键词
AMS Classification. 65F15, 65H10, 65Y20.;
D O I
暂无
中图分类号
学科分类号
摘要
Abstract. Let g : E → F be an analytic function between two Hilbert spaces E and F. We study the set g(B(x, ε)) ⊂ E, the image under g of the closed ball about x∈E with radius ε . When g(x) expresses the solution of an equation depending on x , then the elements of g(B(x,ε )) are ε -pseudosolutions. Our aim is to investigate the size of the set g(B(x,ε )) . We derive upper and lower bounds of the following form:
引用
收藏
页码:1 / 31
页数:30
相关论文
共 50 条
  • [1] Implicit gamma theorems (I): Pseudoroots and pseudospectra
    Dedieu, JP
    Kim, MH
    Shub, M
    Tisseur, F
    FOUNDATIONS OF COMPUTATIONAL MATHEMATICS, 2003, 3 (01) : 1 - 31
  • [2] Generalizing eigenvalue theorems to pseudospectra theorems
    Embree, M
    Trefethen, LN
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2001, 23 (02): : 583 - 590
  • [3] Implicit Multifunction Theorems
    Yuri S. Ledyaev
    Qiji J. Zhu
    Set-Valued Analysis, 1999, 7 : 209 - 238
  • [4] On implicit multifunction theorems
    Aze, D.
    Benahmed, S.
    SET-VALUED ANALYSIS, 2008, 16 (2-3): : 129 - 155
  • [5] On Implicit Multifunction Theorems
    D. Azé
    S. Benahmed
    Set-Valued Analysis, 2008, 16 : 129 - 155
  • [6] Implicit multifunction theorems
    Ledyaev, YS
    Zhu, QJJ
    SET-VALUED ANALYSIS, 1999, 7 (03): : 209 - 238
  • [7] CONSTRUCTIVE IMPLICIT FUNCTION THEOREMS
    TORRIANI, HH
    DISCRETE MATHEMATICS, 1989, 76 (03) : 247 - 269
  • [8] A note on implicit multifunction theorems
    T. T. A. Nghia
    Optimization Letters, 2014, 8 : 329 - 341
  • [9] Implicit function theorems and discontinuous implicit differential equations
    Heikkilä, S
    INTEGRAL METHODS IN SCIENCE AND ENGINEERING: ANALYTIC AND NUMERICAL TECHNIQUES, 2004, : 79 - 84
  • [10] A note on implicit multifunction theorems
    Nghia, T. T. A.
    OPTIMIZATION LETTERS, 2014, 8 (01) : 329 - 341