A data-driven approach to local gravity field modelling using spherical radial basis functions

被引:1
|
作者
R. Klees
R. Tenzer
I. Prutkin
T. Wittwer
机构
[1] Delft University of Technology,Delft Institute of Earth Observation and Space Systems (DEOS)
来源
Journal of Geodesy | 2008年 / 82卷
关键词
Local gravity field modelling; Spherical radial basisfunctions; GPS-levelling data; Quasi-geoid;
D O I
暂无
中图分类号
学科分类号
摘要
We propose a methodology for local gravity field modelling from gravity data using spherical radial basis functions. The methodology comprises two steps: in step 1, gravity data (gravity anomalies and/or gravity disturbances) are used to estimate the disturbing potential using least-squares techniques. The latter is represented as a linear combination of spherical radial basis functions (SRBFs). A data-adaptive strategy is used to select the optimal number, location, and depths of the SRBFs using generalized cross validation. Variance component estimation is used to determine the optimal regularization parameter and to properly weight the different data sets. In the second step, the gravimetric height anomalies are combined with observed differences between global positioning system (GPS) ellipsoidal heights and normal heights. The data combination is written as the solution of a Cauchy boundary-value problem for the Laplace equation. This allows removal of the non-uniqueness of the problem of local gravity field modelling from terrestrial gravity data. At the same time, existing systematic distortions in the gravimetric and geometric height anomalies are also absorbed into the combination. The approach is used to compute a height reference surface for the Netherlands. The solution is compared with NLGEO2004, the official Dutch height reference surface, which has been computed using the same data but a Stokes-based approach with kernel modification and a geometric six-parameter “corrector surface” to fit the gravimetric solution to the GPS-levelling points. A direct comparison of both height reference surfaces shows an RMS difference of 0.6 cm; the maximum difference is 2.1 cm. A test at independent GPS-levelling control points, confirms that our solution is in no way inferior to NLGEO2004.
引用
收藏
页码:457 / 471
页数:14
相关论文
共 50 条
  • [1] A data-driven approach to local gravity field modelling using spherical radial basis functions
    Klees, R.
    Tenzer, R.
    Prutkin, I.
    Wittwer, T.
    [J]. JOURNAL OF GEODESY, 2008, 82 (08) : 457 - 471
  • [2] Local gravity field modeling using spherical radial basis functions and a genetic algorithm
    Mahbuby, Hany
    Safari, Abdolreza
    Foroughi, Ismael
    [J]. COMPTES RENDUS GEOSCIENCE, 2017, 349 (03) : 106 - 113
  • [3] The choice of the spherical radial basis functions in local gravity field modeling
    R. Tenzer
    R. Klees
    [J]. Studia Geophysica et Geodaetica, 2008, 52
  • [4] The choice of the spherical radial basis functions in local gravity field modeling
    Tenzer, R.
    Klees, R.
    [J]. STUDIA GEOPHYSICA ET GEODAETICA, 2008, 52 (03) : 287 - 304
  • [5] A data-adaptive network design for the regional gravity field modelling using spherical radial basis functions
    Zhang, Fang
    Liu, Huanling
    Wen, Hanjiang
    [J]. Geodesy and Geodynamics, 2024, 15 (06) : 627 - 634
  • [6] A data-adaptive network design for the regional gravity field modelling using spherical radial basis functions
    Fang Zhang
    Huanling Liu
    Hanjiang Wen
    [J]. Geodesy and Geodynamics, 2024, 15 (06) : 627 - 634
  • [7] Local gravity field modelling in rugged terrain using spherical radial basis functions: Case study for the Canadian Rocky Mountains
    School of Surveying, University of Otago, 310 Castle Street, Dunedin, New Zealand
    不详
    [J]. International Association of Geodesy Symposia, (401-409):
  • [8] Local Gravity Field Modelling in Rugged Terrain Using Spherical Radial Basis Functions: Case Study for the Canadian Rocky Mountains
    Tenzer, R.
    Klees, R.
    Wittwer, T.
    [J]. GEODESY FOR PLANET EARTH: PROCEEDINGS OF THE 2009 IAG SYMPOSIUM, 2012, 136 : 400 - 408
  • [9] Combination of GOCE Gravity Gradients in Regional Gravity Field Modelling Using Radial Basis Functions
    Lieb, Verena
    Bouman, Johannes
    Dettmering, Denise
    Fuchs, Martin
    Schmidt, Michael
    [J]. VIII HOTINE-MARUSSI SYMPOSIUM ON MATHEMATICAL GEODESY, 2016, 142 : 101 - 108
  • [10] Application of the nonlinear optimisation in regional gravity field modelling using spherical radial base functions
    Mahbuby, Hany
    Amerian, Yazdan
    Nikoofard, Amirhossein
    Eshagh, Mehdi
    [J]. STUDIA GEOPHYSICA ET GEODAETICA, 2021, 65 (3-4) : 261 - 290