In this paper, we prove the local controllability to positive constant trajectories of a nonlinear system of two coupled ODE equations, posed in the one-dimensional spatial setting, with nonlocal spatial nonlinearities, and using only one localized control with a moving support. The model we deal with is derived from the well-known nonlinear reaction–diffusion Gray–Scott model when the diffusion coefficient of the first chemical species du\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$d_u$$\end{document} tends to 0 and the diffusion coefficient of the second chemical species dv\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$${d_v}$$\end{document} tends to +∞\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$+ \infty $$\end{document}. The strategy of the proof consists in two main steps. First, we establish the local controllability of the reaction–diffusion ODE–PDE derived from the Gray–Scott model taking du=0\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$d_u=0$$\end{document}, and uniformly with respect to the diffusion parameter dv∈(1,+∞)\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$${d_v} \in (1, +\infty )$$\end{document}. In order to do this, we prove the (uniform) null-controllability of the linearized system thanks to an observability estimate obtained through adapted Carleman estimates for ODE–PDE. To pass to the nonlinear system, we use a precise inverse mapping argument and, secondly, we apply the shadow limit dv→+∞\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$${d_v} \rightarrow + \infty $$\end{document} to reduce to the initial system.