Finite element method resolution of non-linear Helmholtz equation

被引:0
|
作者
S. Selleri
L. Vincetti
A. Cucinotta
机构
[1] Università degli Studi di Parma,Dipartimento di Ingegneria dell'Informazione
来源
关键词
Soliton; Finite Element Method; Helmholtz Equation; Beam Propagation; Adaptive Mesh;
D O I
暂无
中图分类号
学科分类号
摘要
A non-paraxial beam propagation method for non-linear media is presented. It directly implements the non-linear Helmholtz equation without introducing the slowing varying envelope approximation. The finite element method has been used to describe the field and the medium characteristics on the transverse cross-section as well as along the longitudinal direction. The finite element capabilities as, for example, the non-uniform mesh distribution, the use of adaptive mesh techniques and the high sparsity of the system matrices, allow one to obtain a fast, versatile and accurate tool for beam propagation analysis. Examples of spatial soliton evolution describe phenomena not predicted in the frame of the slowing varying envelope approximation.
引用
收藏
页码:457 / 465
页数:8
相关论文
共 50 条
  • [1] Finite element method resolution of non-linear Helmholtz equation
    Selleri, S
    Vincetti, L
    Cucinotta, A
    [J]. OPTICAL AND QUANTUM ELECTRONICS, 1998, 30 (5-6) : 457 - 465
  • [2] A posteriori finite element error bounds for non-linear outputs of the Helmholtz equation
    Sarrate, J
    Peraire, J
    Patera, A
    [J]. INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS, 1999, 31 (01) : 17 - 36
  • [3] FINITE ELEMENT METHOD FOR HELMHOLTZ EQUATION
    Kabanikhin, S., I
    Cheremisin, A. N.
    Shishlenin, M. A.
    [J]. SIBERIAN ELECTRONIC MATHEMATICAL REPORTS-SIBIRSKIE ELEKTRONNYE MATEMATICHESKIE IZVESTIYA, 2010, 7 : C362 - C379
  • [4] THE SOLUTION OF NON-LINEAR HYPERBOLIC EQUATION SYSTEMS BY THE FINITE-ELEMENT METHOD
    LOHNER, R
    MORGAN, K
    ZIENKIEWICZ, OC
    [J]. INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS, 1984, 4 (11) : 1043 - 1063
  • [5] Resolution of coupled Helmholtz equation in the inhomogeneous coaxial waveguides by the finite element method
    Bour, M.
    Toumanari, A.
    Khatib, D.
    [J]. EUROPEAN PHYSICAL JOURNAL-APPLIED PHYSICS, 2007, 38 (01): : 61 - 67
  • [6] A multiscale finite element method for the Helmholtz equation
    Oberai, AA
    Pinsky, PM
    [J]. COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 1998, 154 (3-4) : 281 - 297
  • [7] COMPUTATIONS WITH THE NON-LINEAR HELMHOLTZ-EQUATION
    KRIEGSMANN, GA
    MORAWETZ, CS
    [J]. JOURNAL OF THE OPTICAL SOCIETY OF AMERICA, 1981, 71 (08) : 1015 - 1019
  • [8] Some aspects of the non-linear finite element method
    Crisfield, MA
    Jelenic, G
    Mi, Y
    Zhong, HG
    Fan, Z
    [J]. FINITE ELEMENTS IN ANALYSIS AND DESIGN, 1997, 27 (01) : 19 - 40
  • [9] A discontinuous finite element method at element level for Helmholtz equation
    Loula, Abimael F. D.
    Alvarez, Gustavo B.
    do Carmo, Eduardo G. D.
    Rochinha, Fernando A.
    [J]. COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2007, 196 (4-6) : 867 - 878
  • [10] NON-LINEAR OPTIMIZATION OF THE SHAPE FUNCTION WHEN SOLVING THE 2-D HELMHOLTZ-EQUATION BY MEANS OF THE FINITE-ELEMENT METHOD
    UTJES, JC
    SARMIENTO, GS
    SANZI, HC
    LAURA, PAA
    [J]. JOURNAL OF SOUND AND VIBRATION, 1989, 135 (01) : 21 - 35