Prospecting black hole thermodynamics with fractional quantum mechanics

被引:0
|
作者
S. Jalalzadeh
F. Rodrigues da Silva
P. V. Moniz
机构
[1] Universidade Federal de Pernambuco,Departamento de Física
[2] Universidade da Beira Interior,Departmento de Física
[3] Centro de Matemática e Aplicações (CMA-UBI),undefined
来源
关键词
D O I
暂无
中图分类号
学科分类号
摘要
This paper investigates whether the framework of fractional quantum mechanics can broaden our perspective of black hole thermodynamics. Concretely, we employ a space-fractional derivative (Riesz in Acta Math 81:1, 1949) as our main tool. Moreover, we restrict our analysis to the case of a Schwarzschild configuration. From a subsequently modified Wheeler–DeWitt equation, we retrieve the corresponding expressions for specific observables. Namely, the black hole mass spectrum, M, its temperature T, and entropy, S. We find that these bear consequential alterations conveyed through a fractional parameter, α\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha $$\end{document}. In particular, the standard results are recovered in the specific limit α=2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha =2$$\end{document}. Furthermore, we elaborate how generalizations of the entropy-area relation suggested by Tsallis and Cirto (Eur Phys J C 73:2487, 2013) and Barrow (Phys Lett B 808:135643, 2020) acquire a complementary interpretation in terms of a fractional point of view. A thorough discussion of our results is presented.
引用
收藏
相关论文
共 50 条
  • [1] Prospecting black hole thermodynamics with fractional quantum mechanics
    Jalalzadeh, S.
    Rodrigues da Silva, F.
    Moniz, P. V.
    [J]. EUROPEAN PHYSICAL JOURNAL C, 2021, 81 (07):
  • [2] Statistical mechanics and black hole thermodynamics
    Carlip, S
    [J]. NUCLEAR PHYSICS B, 1997, : 8 - 12
  • [3] Black Hole Thermodynamics and Statistical Mechanics
    Carlip, S.
    [J]. PHYSICS OF BLACK HOLES: A GUIDED TOUR, 2009, 769 : 89 - 123
  • [4] Quantum black hole thermodynamics
    Majumdar, Parthasarathi
    [J]. CHAOS, NONLINEARITY, COMPLEXITY: THE DYNAMICAL PARADIGM OF NATURE, 2006, 206 : 218 - 246
  • [5] Quantum mechanics of a black hole
    Gour, G
    [J]. PHYSICAL REVIEW D, 2000, 61 (12):
  • [6] Black hole thermodynamics from entanglement mechanics
    Chandran, S. Mahesh
    Shankaranarayanan, S.
    [J]. SIXTEENTH MARCEL GROSSMANN MEETING, 2023, : 1223 - 1237
  • [7] Quantum optics meets black hole thermodynamics via conformal quantum mechanics: II. Thermodynamics of acceleration radiation
    Azizi, A.
    Camblong, H. E.
    Chakraborty, A.
    Ordonez, C. R.
    Scully, M. O.
    [J]. PHYSICAL REVIEW D, 2021, 104 (08)
  • [8] Thermodynamics of the quantum Schwarzschild black hole
    Balart, Leonardo
    Panotopoulos, Grigoris
    Rincon, Angel
    [J]. EUROPEAN PHYSICAL JOURNAL PLUS, 2024, 139 (05):
  • [9] Higher Derivative Corrections to Black Hole Thermodynamics from Supersymmetric Matrix Quantum Mechanics
    Hanada, Masanori
    Hyakutake, Yoshifumi
    Nishimura, Jun
    Takeuchi, Shingo
    [J]. PHYSICAL REVIEW LETTERS, 2009, 102 (19)
  • [10] Lectures on black hole quantum mechanics
    Wilczek, F
    [J]. INTERNATIONAL JOURNAL OF MODERN PHYSICS A, 1998, 13 (31): : 5279 - 5372