Optimal dynamical range of excitable networks at criticality

被引:0
|
作者
Osame Kinouchi
Mauro Copelli
机构
[1] Faculdade de Filosofia,Departamento de Física e Matemática
[2] Ciências e Letras de Ribeirão Preto,Departamento de Física
[3] Universidade de São Paulo,undefined
[4] Laboratório de Física Teórica e Computacional,undefined
[5] Universidade Federal de Pernambuco,undefined
来源
Nature Physics | 2006年 / 2卷
关键词
D O I
暂无
中图分类号
学科分类号
摘要
A recurrent idea in the study of complex systems is that optimal information processing is to be found near phase transitions. However, this heuristic hypothesis has few (if any) concrete realizations where a standard and biologically relevant quantity is optimized at criticality. Here we give a clear example of such a phenomenon: a network of excitable elements has its sensitivity and dynamic range maximized at the critical point of a non-equilibrium phase transition. Our results are compatible with the essential role of gap junctions in olfactory glomeruli and retinal ganglionar cell output. Synchronization and global oscillations also emerge from the network dynamics. We propose that the main functional role of electrical coupling is to provide an enhancement of dynamic range, therefore allowing the coding of information spanning several orders of magnitude. The mechanism could provide a microscopic neural basis for psychophysical laws.
引用
收藏
页码:348 / 351
页数:3
相关论文
共 50 条
  • [1] Optimal dynamical range of excitable networks at criticality
    Kinouchi, Osame
    Copelli, Mauro
    [J]. NATURE PHYSICS, 2006, 2 (05) : 348 - 352
  • [2] Effects of refractory period on dynamical range in excitable networks
    Dong, Ya-Qin
    Wang, Fan
    Wang, Sheng-Jun
    Huang, Zi-Gang
    [J]. CHINESE PHYSICS B, 2019, 28 (12)
  • [3] Effects of refractory period on dynamical range in excitable networks
    董亚琴
    王帆
    王圣军
    黄子罡
    [J]. Chinese Physics B, 2019, 28 (12) : 382 - 386
  • [4] Optimal control of excitable systems near criticality
    Finlinson, Kathleen
    Shew, Woodrow L.
    Larremore, Daniel B.
    Restrepo, Juan G.
    [J]. PHYSICAL REVIEW RESEARCH, 2020, 2 (03):
  • [5] Physics of psychophysics: optimal dynamic range of critical excitable networks
    Mauro Copelli
    Osame Kinouchi
    [J]. BMC Neuroscience, 8 (Suppl 2)
  • [6] EXCITABLE NETWORKS: NONEQUILIBRIUM CRITICALITY AND OPTIMUM TOPOLOGY
    Torres, J. J.
    De Franciscis, S.
    Johnson, S.
    Marro, J.
    [J]. INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2010, 20 (03): : 869 - 875
  • [7] Backtracking activation impacts the criticality of excitable networks
    Zhang, Renquan
    Quan, Guoyi
    Wang, Jiannan
    Pei, Sen
    [J]. arXiv, 2019,
  • [8] Backtracking activation impacts the criticality of excitable networks
    Zhang, Renquan
    Quan, Guoyi
    Wang, Jiannan
    Pei, Sen
    [J]. NEW JOURNAL OF PHYSICS, 2020, 22 (01):
  • [9] Dynamical Criticality in Gene Regulatory Networks
    Villani, Marco
    La Rocca, Luca
    Kauffman, Stuart Alan
    Serra, Roberto
    [J]. COMPLEXITY, 2018,
  • [10] Dynamic range maximization in excitable networks
    Zhang, Renquan
    Pei, Sen
    [J]. CHAOS, 2018, 28 (01)