On the convergence of generalized power series solutions of q-difference equations

被引:0
|
作者
Renat Gontsov
Irina Goryuchkina
Alberto Lastra
机构
[1] Institute for Information Transmission Problems of the Russian Academy of Sciences,Keldysh Institute of Applied Mathematics
[2] Russian Academy of Sciences,undefined
[3] Universidad de Alcalá Departamento de Física y Matemáticas,undefined
来源
Aequationes mathematicae | 2022年 / 96卷
关键词
Convergence; Generalized formal power series; -difference equation; 39A13 (Primary); 39A45 (Secondary);
D O I
暂无
中图分类号
学科分类号
摘要
A sufficient condition for the convergence of a generalized formal power series solution to an algebraic q-difference equation is provided. The main result leans on a geometric property related to the semi-group of (complex) power exponents of such a series. This property corresponds to the situation in which the small divisors phenomenon does not arise. Some examples illustrating the cases where the obtained sufficient condition can or cannot be applied are also depicted.
引用
收藏
页码:579 / 597
页数:18
相关论文
共 50 条
  • [1] On the convergence of generalized power series solutions of q-difference equations
    Gontsov, Renat
    Goryuchkina, Irina
    Lastra, Alberto
    [J]. AEQUATIONES MATHEMATICAE, 2022, 96 (03) : 579 - 597
  • [2] On the meromorphic solutions of generalized q-difference equations
    Tu, Hongqiang
    Gu, Yongyi
    [J]. SCIENCEASIA, 2020, 46 (05): : 626 - 633
  • [3] On the summability of formal power series solutions of q-difference equations - I
    Zhang, CG
    [J]. COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1998, 327 (04): : 349 - 352
  • [4] On the summability of formal power series solutions of q-difference equations, II
    Marotte, F
    Zhang, CG
    [J]. COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1998, 327 (08): : 715 - 718
  • [5] Multisummability of formal power series solutions of linear analytic q-difference equations
    Marotte, F
    Zhang, C
    [J]. ANNALES DE L INSTITUT FOURIER, 2000, 50 (06) : 1859 - +
  • [6] Solutions of complex difference and q-difference equations
    Wang, Yue
    [J]. ADVANCES IN DIFFERENCE EQUATIONS, 2016,
  • [7] Solutions of complex difference and q-difference equations
    Yue Wang
    [J]. Advances in Difference Equations, 2016
  • [8] Nevanlinna theory for the q-difference operator and meromorphic solutions of q-difference equations
    Barnett, D. C.
    Halburd, R. G.
    Morgan, W.
    Korhonen, R. J.
    [J]. PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 2007, 137 : 457 - 474
  • [9] Entire solutions of q-difference equations and value distribution of q-difference polynomials
    Zhang, Jilong
    Yang, Lianzhong
    [J]. ANNALES POLONICI MATHEMATICI, 2013, 109 (01) : 39 - 46
  • [10] Power Series Solutions of Non-linear q-Difference Equations and the Newton–Puiseux Polygon
    J. Cano
    P. Fortuny Ayuso
    [J]. Qualitative Theory of Dynamical Systems, 2022, 21