Identifying the severity of diabetic retinopathy by visual function measures using both traditional statistical methods and interpretable machine learning: a cross-sectional study

被引:0
|
作者
David M. Wright
Usha Chakravarthy
Radha Das
Katie W. Graham
Timos T. Naskas
Jennifer Perais
Frank Kee
Tunde Peto
Ruth E. Hogg
机构
[1] Queen’s University Belfast,Centre for Public Health
[2] Queen’s University Belfast,Wellcome Wolfson Institute for Experimental Medicine
来源
Diabetologia | 2023年 / 66卷
关键词
Acuity; Contrast sensitivity; Diabetic retinopathy; Low-luminance acuity; Machine learning; Microperimetry; Perimetry; Statistics; Visual function;
D O I
暂无
中图分类号
学科分类号
摘要
引用
收藏
页码:2250 / 2260
页数:10
相关论文
共 50 条
  • [1] Identifying the severity of diabetic retinopathy by visual function measures using both traditional statistical methods and interpretable machine learning: a cross-sectional study
    Wright, David M.
    Chakravarthy, Usha
    Das, Radha
    Graham, Katie W.
    Naskas, Timos T.
    Perais, Jennifer
    Kee, Frank
    Peto, Tunde
    Hogg, Ruth E.
    DIABETOLOGIA, 2023, 66 (12) : 2250 - 2260
  • [2] Interpretable Machine Learning to Identify Visual Function Measures which Best Describe Diabetic Retinopathy Stage
    Hogg, R.
    Montesano, G.
    Das, R.
    Chakravarthy, U.
    Crabb, D.
    Wright, D. M.
    EUROPEAN JOURNAL OF OPHTHALMOLOGY, 2022, 32 (1_SUPPL) : 13 - 13
  • [3] Predicting diabetic retinopathy and identifying interpretable biomedical features using machine learning algorithms
    Tsao, Hsin-Yi
    Chan, Pei-Ying
    Su, Emily Chia-Yu
    BMC BIOINFORMATICS, 2018, 19
  • [4] Predicting diabetic retinopathy and identifying interpretable biomedical features using machine learning algorithms
    Hsin-Yi Tsao
    Pei-Ying Chan
    Emily Chia-Yu Su
    BMC Bioinformatics, 19
  • [5] The association between the severity of diabetic retinopathy and cognitive impairment: a cross-sectional study
    Dourandeesh, Maryam
    Akbari, Mitra
    Pourramzani, Ali
    Alizadeh, Yousef
    Leili, Ehsan Kazemnezhad
    Shemshadi, Amir Hossein
    Mohammadi-manesh, Ghazaleh
    INTERNATIONAL OPHTHALMOLOGY, 2024, 44 (01)
  • [6] A Metabolism-Based Interpretable Machine Learning Prediction Model for Diabetic Retinopathy Risk: A Cross-Sectional Study in Chinese Patients with Type 2 Diabetes
    Zong, Guo-Wei
    Wang, Wan-Ying
    Zheng, Jun
    Zhang, Wei
    Luo, Wei-Ming
    Fang, Zhong-Ze
    Zhang, Qiang
    JOURNAL OF DIABETES RESEARCH, 2023, 2023
  • [7] Diabetic retinopathy risk prediction for fundus examination using sparse learning: a cross-sectional study
    Ein Oh
    Tae Keun Yoo
    Eun-Cheol Park
    BMC Medical Informatics and Decision Making, 13
  • [8] Diabetic retinopathy risk prediction for fundus examination using sparse learning: a cross-sectional study
    Oh, Ein
    Yoo, Tae Keun
    Park, Eun-Cheol
    BMC MEDICAL INFORMATICS AND DECISION MAKING, 2013, 13
  • [9] Identifying myoglobin as a mediator of diabetic kidney disease: a machine learning-based cross-sectional study
    Wu, Ruoru
    Shu, Zhihao
    Zou, Fei
    Zhao, Shaoli
    Chan, Saolai
    Hu, Yaxian
    Xiang, Hong
    Chen, Shuhua
    Fu, Li
    Cao, Dongsheng
    Lu, Hongwei
    SCIENTIFIC REPORTS, 2022, 12 (01)
  • [10] Identifying myoglobin as a mediator of diabetic kidney disease: a machine learning-based cross-sectional study
    Ruoru Wu
    Zhihao Shu
    Fei Zou
    Shaoli Zhao
    Saolai Chan
    Yaxian Hu
    Hong Xiang
    Shuhua Chen
    Li Fu
    Dongsheng Cao
    Hongwei Lu
    Scientific Reports, 12