Warped Products and Yang–Mills Equations on Noncommutative Spaces

被引:0
|
作者
Alessandro Zampini
机构
[1] Université du Luxembourg,Faculté des Sciences, de la Technologie et de la Communication, Mathematics Research Unit
来源
关键词
53C07; 81R60; 17B37; Yang–Mills equations; Hopf algebras; warped product; meron solution;
D O I
暂无
中图分类号
学科分类号
摘要
This paper presents a non-self-dual solution of the Yang–Mills equations on a noncommutative version of the classical R4\{0}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb{R}^4\smallsetminus\{0\}}$$\end{document}, so generalizing the classical meron solution first introduced by de Alfaro et al. (Phys Lett B 65:163–166, 1976). The basic tool for that is a generalization to noncommutative spaces of the classical notion of warped products between metric spaces.
引用
收藏
页码:221 / 243
页数:22
相关论文
共 50 条