On Duality in Nonconvex Vector Optimization in Banach Spaces Using Augmented Lagrangians

被引:0
|
作者
Phan Quoc Khanh
Tran Hue Nuong
Michel Théra
机构
[1] Université d'Hochiminh Ville,Département de Mathématiques et d'Informatique
[2] Université de Limoges,LACO, UPRESA 6090
来源
Positivity | 1999年 / 3卷
关键词
vector optimization; positively proprer minima; augmented Lagrangian; Birkhoff orthogonality; quadratic growth condition; inf-stability; stability of degree 2;
D O I
暂无
中图分类号
学科分类号
摘要
This paper shows how the use of penalty functions in terms of projections on the constraint cones, which are orthogonal in the sense of Birkhoff, permits to establish augmented Lagrangians and to define a dual problem of a given nonconvex vector optimization problem. Then the weak duality always holds. Using the quadratic growth condition together with the inf-stability or a kind of Rockafellar's stability called stability of degree two, we derive strong duality results between the properly efficient solutions of the two problems. A strict converse duality result is proved under an additional convexity assumption, which is shown to be essential.
引用
收藏
页码:49 / 64
页数:15
相关论文
共 50 条
  • [1] On duality in nonconvex vector optimization in Banach spaces using augmented Lagrangians
    Khanh, PQ
    Nuong, TH
    Théra, M
    POSITIVITY, 1999, 3 (01) : 49 - 64
  • [2] On weak conjugacy, augmented Lagrangians and duality in nonconvex optimization
    Gulcin Dinc Yalcin
    Refail Kasimbeyli
    Mathematical Methods of Operations Research, 2020, 92 : 199 - 228
  • [3] On weak conjugacy, augmented Lagrangians and duality in nonconvex optimization
    Yalcin, Gulcin Dinc
    Kasimbeyli, Refail
    MATHEMATICAL METHODS OF OPERATIONS RESEARCH, 2020, 92 (01) : 199 - 228
  • [4] Duality in vector optimization in Banach spaces with generalized convexity
    Mishra, SK
    Giorgi, G
    Wang, SY
    JOURNAL OF GLOBAL OPTIMIZATION, 2004, 29 (04) : 415 - 424
  • [5] Duality in Vector Optimization in Banach Spaces with Generalized Convexity
    S.K. Mishra
    G. Giorgi
    S.Y. Wang
    Journal of Global Optimization, 2004, 29 : 415 - 424
  • [6] Duality in nonconvex vector optimization
    Kasimbeyli, Refail
    Karimi, Masoud
    JOURNAL OF GLOBAL OPTIMIZATION, 2021, 80 (01) : 139 - 160
  • [7] Duality in nonconvex vector optimization
    Refail Kasimbeyli
    Masoud Karimi
    Journal of Global Optimization, 2021, 80 : 139 - 160
  • [8] Separation Approach for Augmented Lagrangians in Constrained Nonconvex Optimization
    H. Z. Luo
    G. Mastroeni
    H. X. Wu
    Journal of Optimization Theory and Applications, 2010, 144 : 275 - 290
  • [9] On saddle points of augmented Lagrangians for constrained nonconvex optimization
    Sun, XL
    Li, D
    McKinnon, KIM
    SIAM JOURNAL ON OPTIMIZATION, 2005, 15 (04) : 1128 - 1146
  • [10] Separation Approach for Augmented Lagrangians in Constrained Nonconvex Optimization
    Luo, H. Z.
    Mastroeni, G.
    Wu, H. X.
    JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 2010, 144 (02) : 275 - 290