An odd Furstenberg-Szemerédi theorem and quasi-affine systems

被引:0
|
作者
Bernard Host
Bryna Kra
机构
[1] Univerité de Marne la Vallée,Equipe d’analyse et de mathématiques appliquées
[2] The Ohio State University,Department of Mathematics
来源
关键词
Compact Abelian Group; Characteristic Factor; Ergodic Component; Distinct Integer; Ergodic System;
D O I
暂无
中图分类号
学科分类号
摘要
We prove a version of Furstenberg’s ergodic theorem with restrictions on return times. More specifically, for a measure preserving system (X, B, μ,T), integers 0 ≤j <k, andE ⊂X with μ(E) > 0, we show that there existsn ≡ j (modk) with ώ(E ∩T-nE ∩T-2nE ∩T-3nE) > 0, so long asTk is ergodic. This result requires a deeper understanding of the limit of some nonconventional ergodic averages and the introduction of a new class of systems, the ‘Quasi-Affine Systems’.
引用
收藏
页码:183 / 220
页数:37
相关论文
共 6 条