Tetravalent edge-transitive cayley graphs of PGL (2, p)

被引:0
|
作者
Xiao-hui Hua
Shang-jin Xu
Yun-ping Deng
机构
[1] Henan Normal University,College of Mathematics and Information Science
[2] Guangxi University,School of Mathematics and Information Science
[3] Shanghai Jiaotong University,Department of Mathematics
关键词
Cayley graph; normal; bi-normal; simple group; 05C25; 20B25;
D O I
暂无
中图分类号
学科分类号
摘要
Let Γ = Cay(G, S), R(G) be the right regular representation of G. The graph Γ is called normal with respect to G, if R(G) is normal in the full automorphism group Aut(Γ) of Γ. Γ is called a bi-normal with respect to G if R(G) is not normal in Aut(Γ), but R(G) contains a subgroup of index 2 which is normal in Aut(Γ). In this paper, we prove that connected tetravalent edge-transitive Cayley graphs on PGL(2, p) are either normal or bi-normal when p ≠ 11 is a prime.
引用
收藏
页码:837 / 842
页数:5
相关论文
共 50 条
  • [1] Tetravalent Edge-transitive Cayley Graphs of PGL (2,p)
    Hua, Xiao-hui
    Xu, Shang-jin
    Deng, Yun-ping
    [J]. ACTA MATHEMATICAE APPLICATAE SINICA-ENGLISH SERIES, 2013, 29 (04): : 837 - 842
  • [2] Tetravalent Edge-transitive Cayley Graphs of PGL(2, p)
    Xiao-hui HUA
    Shang-jin XU
    Yun-ping DENG
    [J]. Acta Mathematicae Applicatae Sinica, 2013, 29 (04) : 837 - 842
  • [3] Tetravalent edge-transitive Cayley graphs of Frobenius groups
    Wang, Lei
    Liu, Yin
    Yan, Yanxiong
    [J]. JOURNAL OF ALGEBRAIC COMBINATORICS, 2021, 53 (02) : 527 - 551
  • [4] Tetravalent edge-transitive Cayley graphs of Frobenius groups
    Lei Wang
    Yin Liu
    Yanxiong Yan
    [J]. Journal of Algebraic Combinatorics, 2021, 53 : 527 - 551
  • [5] Tetravalent edge-transitive Cayley graphs with odd number of vertices
    Cai, HL
    Zai, PL
    Hua, Z
    [J]. JOURNAL OF COMBINATORIAL THEORY SERIES B, 2006, 96 (01) : 164 - 181
  • [6] On tetravalent normal edge-transitive Cayley graphs on the modular group
    Sharifii, Hesam
    Darafsheh, Mohammad Reza
    [J]. TURKISH JOURNAL OF MATHEMATICS, 2017, 41 (05) : 1308 - 1312
  • [7] Tetravalent edge-transitive graphs of order p 2 q
    Pan JiangMin
    Liu Yin
    Huang ZhaoHong
    Liu ChenLong
    [J]. SCIENCE CHINA-MATHEMATICS, 2014, 57 (02) : 293 - 302
  • [8] The edge-transitive tetravalent Cayley graphs of square-free order
    Li, Cai Heng
    Liu, Zhe
    Lu, Zai Ping
    [J]. DISCRETE MATHEMATICS, 2012, 312 (12-13) : 1952 - 1967
  • [9] A family of edge-transitive Cayley graphs
    Jiangmin Pan
    Zhaofei Peng
    [J]. Journal of Algebraic Combinatorics, 2019, 49 : 147 - 167
  • [10] A family of edge-transitive Cayley graphs
    Pan, Jiangmin
    Peng, Zhaofei
    [J]. JOURNAL OF ALGEBRAIC COMBINATORICS, 2019, 49 (02) : 147 - 167