System of Schwinger-Dyson equations and asymptotic behavior in the Euclidean region

被引:0
|
作者
V. E. Rochev
机构
[1] National Research Center Kurchatov Institute,Institute for High Energy Physics
来源
Physics of Atomic Nuclei | 2015年 / 78卷
关键词
Atomic Nucleus; Dyson Equation; Ladder Approximation; Phion; Euclidean Region;
D O I
暂无
中图分类号
学科分类号
摘要
A system of Schwinger-Dyson equations for the model of scalar-field interaction is studied in a deep Euclidean region. It is shown that there exists a critical coupling constant that separates the weak-coupling region characterized by the asymptotically free behavior and the strong-coupling region, where the asymptotic behavior of field propagators becomes ultralocal.
引用
收藏
页码:443 / 446
页数:3
相关论文
共 50 条
  • [1] System of Schwinger-Dyson equations and asymptotic behavior in the Euclidean region
    Rochev, V. E.
    PHYSICS OF ATOMIC NUCLEI, 2015, 78 (03) : 443 - 446
  • [2] Asymptotic behavior in a model with Yukawa interaction from Schwinger-Dyson equations
    Rochev, V. E.
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2012, 45 (20)
  • [3] Schwinger-Dyson equations and disorder
    Szczepaniak, Adam P.
    Reinhardt, Hugo
    PHYSICAL REVIEW D, 2011, 84 (05):
  • [4] Asymptotic behavior and critical coupling in the scalar Yukawa model from Schwinger-Dyson equations
    Rochev, V. E.
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2013, 46 (18)
  • [5] Complex Langevin equations and Schwinger-Dyson equations
    Guralnik, Gerald
    Pehlevan, Cengiz
    NUCLEAR PHYSICS B, 2009, 811 (03) : 519 - 536
  • [6] Pinch technique for Schwinger-Dyson equations
    Binosi, Daniele
    Papavassiliou, Joannis
    JOURNAL OF HIGH ENERGY PHYSICS, 2007, (03):
  • [7] Schwinger-Dyson equations and line integrals
    Luis Salcedo, Lorenzo
    Seiler, Erhard
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2019, 52 (03)
  • [8] SYMMETRY OF HOMOGENEOUS SCHWINGER-DYSON EQUATIONS
    KONOPELCHENKO, BG
    LETTERE AL NUOVO CIMENTO, 1974, 11 (04): : 271 - 274
  • [9] SCHWINGER-DYSON EQUATIONS: CLASSICAL AND QUANTUM
    Mingo, James A.
    Speicher, Roland
    PROBABILITY AND MATHEMATICAL STATISTICS-POLAND, 2013, 33 (02): : 275 - 285
  • [10] Schwinger-Dyson equations and flavor mixing
    Blasone, M.
    Jizba, P.
    Smaldone, L.
    SYMMETRIES IN SCIENCE XVII, 2018, 1071