Mutually disjoint t-designs and t-SEEDs from extremal doubly-even self-dual codes

被引:0
|
作者
Jianying Fang
Yanxun Chang
机构
[1] Beijing Jiaotong University,Institute of Mathematics
[2] Jiangxi Normal University,Computer Information Engineering Institute
来源
关键词
Spontaneous emission error design (SEED); Doubly-even self-dual code; Extremal; Generator matrix; 05B05; 94B05;
D O I
暂无
中图分类号
学科分类号
摘要
It is known that extremal doubly-even self-dual codes of length n≡8\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n\equiv 8$$\end{document} or 0(mod24)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$0\ (\mathrm {mod}\ 24)$$\end{document} yield 3- or 5-designs respectively. In this paper, by using the generator matrices of bordered double circulant doubly-even self-dual codes, we give 3-(n, k; m)-SEEDs with (n, k, m) ∈{(32,8,5),(56,12,9),(56,16,9),(56,24,9),(80,16,52)}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\in \{(32,8,5), (56,12,9), (56,16,9), (56,24,9), (80,16,52)\}$$\end{document}. With the aid of computer, we obtain 22 generator matrices of bordered double circulant doubly-even self-dual codes of length 48, which enable us to get 506 mutually disjoint 5-(48, k, λ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\lambda $$\end{document}) designs for (k, λ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\lambda $$\end{document})=(12, 8),(16, 1356),(20, 36176). Moreover, this implies 5-(48, k; 506)-SEEDs for k=12,16,20,24\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k=12, 16, 20, 24$$\end{document}.
引用
收藏
页码:769 / 780
页数:11
相关论文
共 50 条
  • [1] Mutually disjoint t-designs and t-SEEDs from extremal doubly-even self-dual codes
    Fang, Jianying
    Chang, Yanxun
    DESIGNS CODES AND CRYPTOGRAPHY, 2014, 73 (03) : 769 - 780
  • [2] ON SELF-DUAL DOUBLY-EVEN EXTREMAL CODES
    KOCH, H
    DISCRETE MATHEMATICS, 1990, 83 (2-3) : 291 - 300
  • [3] Extremal doubly-even self-dual codes from Hadamard matrices
    Georgiou, S.
    Koukouvinos, C.
    Lappas, E.
    JOURNAL OF DISCRETE MATHEMATICAL SCIENCES & CRYPTOGRAPHY, 2006, 9 (02): : 331 - 339
  • [4] The mass of extremal doubly-even self-dual codes of length 40
    King, OD
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2001, 47 (06) : 2558 - 2560
  • [5] On extremal binary doubly-even self-dual codes of length 88
    Yorgova, Radinka
    At, Nuray
    2008 INTERNATIONAL SYMPOSIUM ON INFORMATION THEORY AND ITS APPLICATIONS, VOLS 1-3, 2008, : 391 - +
  • [6] Extremal doubly-even self-dual cocyclic [40,20] codes
    Baliga, A
    2000 IEEE INTERNATIONAL SYMPOSIUM ON INFORMATION THEORY, PROCEEDINGS, 2000, : 114 - 114
  • [7] New extremal self-dual doubly-even binary codes of length 88
    Goodwin, V
    Yorov, V
    FINITE FIELDS AND THEIR APPLICATIONS, 2005, 11 (01) : 1 - 5
  • [8] On the support designs of extremal binary doubly even self-dual codes
    Naoyuki Horiguchi
    Tsuyoshi Miezaki
    Hiroyuki Nakasora
    Designs, Codes and Cryptography, 2014, 72 : 529 - 537
  • [9] On the support designs of extremal binary doubly even self-dual codes
    Horiguchi, Naoyuki
    Miezaki, Tsuyoshi
    Nakasora, Hiroyuki
    DESIGNS CODES AND CRYPTOGRAPHY, 2014, 72 (03) : 529 - 537
  • [10] A Characterization of Designs Related to an Extremal Doubly-Even Self-Dual Code of Length 48
    Masaaki Harada
    Akihiro Munemasa
    Vladimir D. Tonchev
    Annals of Combinatorics, 2005, 9 : 189 - 198