Optimal Subcodes of Second Order Reed-Muller Codes andMaximal Linear Spaces of Bivectors of Maximal Rank

被引:0
|
作者
Johannes Maks
Juriaan Simonis
机构
[1] Delft University of Technology,Faculty of InformationTechnology and Systems, Department of Mediamatics
来源
关键词
Reed-Muller codes; BCH codes; rank loci; symplectic spaces;
D O I
暂无
中图分类号
学科分类号
摘要
There are exactlytwo non-equivalent [32,11,12]-codes in the binaryReed-Muller code \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$\mathcal{R}\mathcal{M}(2,5)$$ \end{document} which contain \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$\mathcal{R}\mathcal{M}(2,5)$$ \end{document}and have the weight set {0,12,16,20,32}. Alternatively,the 4-spaces in the projective space \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$\mathbb{P}(\Lambda ^2 \mathbb{F}_2^5 )$$ \end{document}over the vector space \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$\mathbb{P}(\Lambda ^2 \mathbb{F}_2^5 )$$ \end{document}for which all points have rank 4 fall into exactlytwo orbits under the natural action of PGL(5) on \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$\mathbb{P}(\Lambda ^2 \mathbb{F}_2^5 )$$ \end{document}.
引用
收藏
页码:165 / 180
页数:15
相关论文
共 50 条
  • [1] Optimal subcodes of second order Reed-Muller codes and maximal linear spaces of bivectors of maximal rank
    Maks, J
    Simonis, J
    [J]. DESIGNS CODES AND CRYPTOGRAPHY, 2000, 21 (1-3) : 165 - 180
  • [2] Projected Subcodes of the Second Order Binary Reed-Muller Code
    Legeay, Matthieu
    Loidreau, Pierre
    [J]. 2012 IEEE INTERNATIONAL SYMPOSIUM ON INFORMATION THEORY PROCEEDINGS (ISIT), 2012, : 254 - 258
  • [3] Subfield subcodes of projective Reed-Muller codes
    Gimenez, Philippe
    Ruano, Diego
    San-Jose, Rodrigo
    [J]. FINITE FIELDS AND THEIR APPLICATIONS, 2024, 94
  • [4] Cyclic subcodes of generalized Reed-Muller codes
    Moreno, O
    Duursma, IM
    Cherdieu, JP
    Edouard, A
    [J]. IEEE TRANSACTIONS ON INFORMATION THEORY, 1998, 44 (01) : 307 - 311
  • [5] Linear codes of 2-designs as subcodes of the generalized Reed-Muller codes
    He, Zhiwen
    Wen, Jiejing
    [J]. CRYPTOGRAPHY AND COMMUNICATIONS-DISCRETE-STRUCTURES BOOLEAN FUNCTIONS AND SEQUENCES, 2021, 13 (03): : 407 - 423
  • [6] Linear codes of 2-designs as subcodes of the generalized Reed-Muller codes
    Zhiwen He
    Jiejing Wen
    [J]. Cryptography and Communications, 2021, 13 : 407 - 423
  • [7] ON SUBCODES OF GENERALIZED 2ND ORDER REED-MULLER CODES
    TIERSMA, HJ
    [J]. SIAM JOURNAL ON ALGEBRAIC AND DISCRETE METHODS, 1985, 6 (04): : 583 - 591
  • [8] Recursive list decoding for reed-muller codes and their subcodes
    Dumer, I
    Shabunov, K
    [J]. INFORMATION, CODING AND MATHEMATICS, 2002, 687 : 279 - 298
  • [9] Linear codes of 2-designs associated with subcodes of the ternary generalized Reed-Muller codes
    Ding, Cunsheng
    Tang, Chunming
    Tonchev, Vladimir D.
    [J]. DESIGNS CODES AND CRYPTOGRAPHY, 2020, 88 (04) : 625 - 641
  • [10] On the number of minimum weight codewords of subcodes of Reed-Muller codes
    Tokushige, H
    Takata, T
    Kasami, T
    [J]. IEICE TRANSACTIONS ON FUNDAMENTALS OF ELECTRONICS COMMUNICATIONS AND COMPUTER SCIENCES, 1998, E81A (10) : 1990 - 1997