Modified Subgradient Extragradient Methods for Solving Bilevel Split Variational Inequality Problems in Hilbert Spaces

被引:0
|
作者
Van, Le Huynh My [1 ,2 ,3 ]
Thuy, Dang Le [1 ,3 ]
Anh, Tran Viet [4 ]
机构
[1] Univ Informat Technol, Dept Math & Phys, Ho Chi Minh City, Vietnam
[2] Ho Chi Minh City Univ Technol HCMUT, Fac Appl Sci, Dept Appl Math, 268 Ly Thuong Kiet St, Dist 10, Ho Chi Minh City, Vietnam
[3] Vietnam Natl Univ Ho Chi Minh City, Ho Chi Minh City, Vietnam
[4] Posts & Telecommun Inst Technol, Dept Sci Fundamentals, Hanoi, Vietnam
关键词
Bilevel split variational inequality problem; Bilevel variational inequality problem; Split feasibility problem; Subgradient extragradient method; Strong convergence; Monotone mapping; ITERATIVE ALGORITHMS; PROJECTION; SETS;
D O I
10.1007/s40306-023-00508-2
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this work, we propose a new method for solving a bilevel split variational inequality problem (BSVIP) in Hilbert spaces. The proposed method is inspired by the subgradient extragradient method for solving a monotone variational inequality problem. A strong convergence theorem for an algorithm for solving such a BSVIP is proved without knowing any information of the Lipschitz and strongly monotone constants of the mappings. Moreover, we do not require any prior information regarding the norm of the given bounded linear operator. Special cases are considered. Two numerical examples are given to illustrate the performance of our algorithm.
引用
收藏
页码:459 / 478
页数:20
相关论文
共 50 条
  • [1] A strong convergence of modified subgradient extragradient method for solving bilevel pseudomonotone variational inequality problems
    Duong Viet Thong
    Dang Van Hieu
    [J]. OPTIMIZATION, 2020, 69 (06) : 1313 - 1334
  • [2] REVISITING INERTIAL SUBGRADIENT EXTRAGRADIENT ALGORITHMS FOR SOLVING BILEVEL VARIATIONAL INEQUALITY PROBLEMS
    Tan, Bing
    Li, Songxiao
    Cho, Sun Young
    [J]. Journal of Applied and Numerical Optimization, 2022, 4 (03): : 425 - 444
  • [3] An improved inertial extragradient subgradient method for solving split variational inequality problems
    Chibueze C. Okeke
    [J]. Boletín de la Sociedad Matemática Mexicana, 2022, 28
  • [4] An improved inertial extragradient subgradient method for solving split variational inequality problems
    Okeke, Chibueze C.
    [J]. BOLETIN DE LA SOCIEDAD MATEMATICA MEXICANA, 2022, 28 (01):
  • [5] Extragradient subgradient methods for solving bilevel equilibrium problems
    Tadchai Yuying
    Bui Van Dinh
    Do Sang Kim
    Somyot Plubtieng
    [J]. Journal of Inequalities and Applications, 2018
  • [6] Extragradient subgradient methods for solving bilevel equilibrium problems
    Yuying, Tadchai
    Bui Van Dinh
    Kim, Do Sang
    Plubtieng, Somyot
    [J]. JOURNAL OF INEQUALITIES AND APPLICATIONS, 2018,
  • [7] Improved subgradient extragradient methods for solving pseudomonotone variational inequalities in Hilbert spaces
    Duong Viet Thong
    Phan Tu Vuong
    [J]. APPLIED NUMERICAL MATHEMATICS, 2021, 163 : 221 - 238
  • [8] On modified subgradient extragradient methods for pseudomonotone variational inequality problems with applications
    Tan, Bing
    Li, Songxiao
    Qin, Xiaolong
    [J]. COMPUTATIONAL & APPLIED MATHEMATICS, 2021, 40 (07):
  • [9] On modified subgradient extragradient methods for pseudomonotone variational inequality problems with applications
    Bing Tan
    Songxiao Li
    Xiaolong Qin
    [J]. Computational and Applied Mathematics, 2021, 40
  • [10] Relaxed Single Projection Methods for Solving Bilevel Variational Inequality Problems in Hilbert Spaces
    Ogbuisi, Ferdinard U.
    Shehu, Yekini
    Yao, Jen-Chih
    [J]. NETWORKS & SPATIAL ECONOMICS, 2023, 23 (03): : 641 - 678