A Note on Reflectionless Jacobi Matrices

被引:0
|
作者
V. Jakšić
B. Landon
A. Panati
机构
[1] McGill University,Department of Mathematics and Statistics
[2] Harvard University,Department of Mathematics
[3] Aix-Marseille Université,undefined
[4] CNRS,undefined
[5] CPT,undefined
[6] UMR 7332,undefined
[7] Case 907,undefined
[8] Université de Toulon,undefined
[9] CNRS,undefined
[10] CPT,undefined
[11] UMR 7332,undefined
[12] FRUMAM,undefined
来源
Communications in Mathematical Physics | 2014年 / 332卷
关键词
Jacobi Matrix; Jacobi Matrice; Jacobi Operator; Diagonal Matrix Element; Commun Math Phys;
D O I
暂无
中图分类号
学科分类号
摘要
The property that a Jacobi matrix is reflectionless is usually characterized either in terms of Weyl m-functions or the vanishing of the real part of the boundary values of the diagonal matrix elements of the resolvent. We introduce a characterization in terms of stationary scattering theory (the vanishing of the reflection coefficients) and prove that this characterization is equivalent to the usual ones. We also show that the new characterization is equivalent to the notion of being dynamically reflectionless, thus providing a short proof of an important result of Breuer et al. (Commun Math Phys 295:531–550, 2010). The motivation for the new characterization comes from recent studies of the non-equilibrium statistical mechanics of the electronic black box model and we elaborate on this connection.
引用
收藏
页码:827 / 838
页数:11
相关论文
共 50 条
  • [1] A Note on Reflectionless Jacobi Matrices
    Jaksic, V.
    Landon, B.
    Panati, A.
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2014, 332 (02) : 827 - 838
  • [2] Topological properties of reflectionless Jacobi matrices
    Remling, Christian
    JOURNAL OF APPROXIMATION THEORY, 2013, 168 : 1 - 17
  • [3] Reflectionless Herglotz Functions and Jacobi Matrices
    Poltoratski, Alexei
    Remling, Christian
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2009, 288 (03) : 1007 - 1021
  • [4] Reflectionless Herglotz Functions and Jacobi Matrices
    Alexei Poltoratski
    Christian Remling
    Communications in Mathematical Physics, 2009, 288 : 1007 - 1021
  • [5] Approximation Results for Reflectionless Jacobi Matrices
    Poltoratski, Alexei
    Remling, Christian
    INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2011, 2011 (16) : 3575 - 3617
  • [6] Entropic Fluctuations in XY Chains and Reflectionless Jacobi Matrices
    Vojkan Jakšić
    Benjamin Landon
    Claude-Alain Pillet
    Annales Henri Poincaré, 2013, 14 : 1775 - 1800
  • [7] Entropic Fluctuations in XY Chains and Reflectionless Jacobi Matrices
    Jaksic, Vojkan
    Landon, Benjamin
    Pillet, Claude-Alain
    ANNALES HENRI POINCARE, 2013, 14 (07): : 1775 - 1800
  • [8] UNIQUENESS OF REFLECTIONLESS JACOBI MATRICES AND THE DENISOV-RAKHMANOV THEOREM
    Remling, Christian
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2011, 139 (06) : 2175 - 2182
  • [9] NOTE ON A THEOREM OF STONE ON JACOBI MATRICES
    CHIHARA, TS
    AMERICAN MATHEMATICAL MONTHLY, 1965, 72 (06): : 641 - &
  • [10] A Note of Some Inverse Problems on Jacobi Matrices
    Xu, Yinghong
    Zhang, Lipu
    ADVANCES IN MATRIX THEORY AND ITS APPLICATIONS, VOL 1: PROCEEDINGS OF THE EIGHTH INTERNATIONAL CONFERENCE ON MATRIX THEORY AND ITS APPLICATIONS, 2008, : 350 - 353