On the existence of extremal functions for a weighted Sobolev embedding with critical exponent

被引:0
|
作者
Paolo Caldiroli
Roberta Musina
机构
[1] Scuola Internazionale Superiore di Studi Avanzati,
[2] via Beirut,undefined
[3] 2-4,undefined
[4] I-34013 Trieste,undefined
[5] Italy (e-mail: paolocal@sissa.it) ,undefined
[6] Dipartimento di Matematica ed Informatica,undefined
[7] Università di Udine,undefined
[8] via delle Scienze,undefined
[9] 206,undefined
[10] I-33100 Udine,undefined
[11] Italy (e-mail: musina@dimi.uniud.it) ,undefined
关键词
State Solution; Dirichlet Problem; Critical Exponent; Extremal Function; Ground State Solution;
D O I
暂无
中图分类号
学科分类号
摘要
We investigate the existence of ground state solutions to the Dirichlet problem \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $-\div(|x|^\alpha\nabla u)=|u|^{2^*_\alpha-2}u$\end{document} in \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $\Omega$\end{document}, u = 0 on \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $\partial\Omega$\end{document}, where \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $\alpha\in(0,2)$\end{document}, \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $2^*_\alpha={2n\over n-2+\alpha}$\end{document} and \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $\Omega$\end{document} is a domain in \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} ${\bf R}^n$\end{document}. In particular we prove that a non negative ground state solution exists when the domain \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $\Omega$\end{document} is a cone, including the case \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $\Omega={\bf R}^n$\end{document}. Moroever, we study the case of arbitrary domains, showing how the geometry of the domain near the origin and at infinity affects the existence or non existence of ground state solutions.
引用
收藏
页码:365 / 387
页数:22
相关论文
共 50 条