Integral Operator;
Definite Operator;
Fredholm Operator;
Operator Matrice;
Extension Result;
D O I:
暂无
中图分类号:
学科分类号:
摘要:
The main result of this paper states that a positive definite Fredholm integral operator acting on L2([0,1]) can be modified on a Lebesque measurable set \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}
$\mit\Delta $\end{document} in [0,1]2 such that the resulting operator is positive definite and its resolvent kernel is zero on \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}
$\mit\Delta $\end{document}. This answers a question raised in [3]. The proof is based on extension results for positive definite operator matrices and their connection to generalized determinants.