On extensions of positive definite integral Fredholm operators

被引:0
|
作者
M. Bakonyi
机构
[1] Department of Mathematics,
[2] Georgia State University,undefined
[3] Atlanta,undefined
[4] Georgia 30303,undefined
[5] USA,undefined
来源
Archiv der Mathematik | 2000年 / 75卷
关键词
Integral Operator; Definite Operator; Fredholm Operator; Operator Matrice; Extension Result;
D O I
暂无
中图分类号
学科分类号
摘要
The main result of this paper states that a positive definite Fredholm integral operator acting on L2([0,1]) can be modified on a Lebesque measurable set \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $\mit\Delta $\end{document} in [0,1]2 such that the resulting operator is positive definite and its resolvent kernel is zero on \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $\mit\Delta $\end{document}. This answers a question raised in [3]. The proof is based on extension results for positive definite operator matrices and their connection to generalized determinants.
引用
收藏
页码:464 / 468
页数:4
相关论文
共 50 条