Quantum Effects of a Vortex Gravitational Field and the Torsion of Spacetime

被引:0
|
作者
V. G. Krechet
V. B. Oshurko
S. V. Rodichev
机构
[1] Moscow State Technological University “Stankin”,
来源
Russian Physics Journal | 2017年 / 60卷
关键词
torsion; gravitation; vortex field; vacuum averages; quantum effects; scalar field;
D O I
暂无
中图分类号
学科分类号
摘要
Possible quantum effects, induced by the torsion of spacetime described by its pseudotrace Q⌣i=16εiklmQklm\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ {\overset{\smile }{Q}}^i=\frac{1}{6}{\upvarepsilon}^{iklm}{Q}_{klm} $$\end{document}, and by a vortex gravitational field described by its angular velocity ωi=12εiklmeakelma\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ {\upomega}^i=\frac{1}{2}{\upvarepsilon}^{iklm}{e}_{ak}{e}_{lm}^a $$\end{document} of rotation of the tetrad field eakxi\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ {e}_a^k\left({x}^i\right) $$\end{document}, are considered. Toward this end, the vacuum averages <0Tki0>\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ <0\left|{T}_k^i\right|0> $$\end{document} of the energy-momentum tensor Tki\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ {T}_k^i $$\end{document} of the quantized scalar field are calculated. A thorough-going analogy between physical effects induced by these two physical objects is revealed both on the classical and on the quantum level.
引用
收藏
页码:299 / 308
页数:9
相关论文
共 50 条
  • [1] Quantum Effects of a Vortex Gravitational Field and the Torsion of Spacetime
    Krechet, V. G.
    Oshurko, V. B.
    Rodichev, S. V.
    [J]. RUSSIAN PHYSICS JOURNAL, 2017, 60 (02) : 299 - 308
  • [2] Gravitational interaction of a geometric scalar field with a vortex gravitational field in five-dimensional spacetime
    A. S. Kiselev
    V. G. Krechet
    [J]. Russian Physics Journal, 2012, 55 : 576 - 579
  • [3] Gravitational interaction of a geometric scalar field with a vortex gravitational field in five-dimensional spacetime
    Kiselev, A. S.
    Krechet, V. G.
    [J]. RUSSIAN PHYSICS JOURNAL, 2012, 55 (05) : 576 - 579
  • [4] QUANTUM GRAVITATIONAL EFFECTS IN AN ISOTROPIC UNIVERSE WITH TORSION
    VERESHKOV, GM
    DRAGILEV, VM
    PONOMARYOV, VN
    [J]. IZVESTIYA VYSSHIKH UCHEBNYKH ZAVEDENII FIZIKA, 1988, 31 (09): : 5 - 9
  • [5] Gravitational probe of quantum spacetime
    Herceg, Nikola
    Juric, Tajron
    Samsarov, Andjelo
    Smolic, Ivica
    Gupta, Kumar S.
    [J]. PHYSICS LETTERS B, 2024, 854
  • [6] On the Effects of Interaction of a Spinor Field with a Vortex Gravitational Field
    Krechet, V. G.
    Orlova, E. Yu.
    [J]. GRAVITATION & COSMOLOGY, 2011, 17 (04): : 324 - 327
  • [7] On the effects of interaction of a spinor field with a vortex gravitational field
    V. G. Krechet
    E. Yu. Orlova
    [J]. Gravitation and Cosmology, 2011, 17 : 324 - 327
  • [8] Quantum effects in the gravitational field
    Sabine Hossenfelder
    Chiara Marletto
    Vlatko Vedral
    [J]. Nature, 2017, 549 : 31 - 31
  • [9] Quantum effects in the gravitational field
    Marletto, Chiara
    Vedral, Vlatko
    [J]. NATURE, 2017, 549 (7670) : 31 - 31
  • [10] The gravitational field of the Schwarzschild spacetime
    Borgiel, Wlodzimierz
    [J]. DIFFERENTIAL GEOMETRY AND ITS APPLICATIONS, 2011, 29 : S207 - S210