We construct a bijective continuous area preserving map from a class of elongated dipyramids to the sphere, together with its inverse. Then we investigate for which such solid polyhedrons the area preserving map can be used for constructing a bijective continuous volume preserving map to the 3D-ball. These maps can be further used in constructing uniform and refinable grids on the sphere and on the ball, starting from uniform and refinable grids on the elongated dipyramids. In particular, we show that HEALPix grids can be obtained from these maps. We also study the optimality of the logarithmic energy of the configurations of points obtained from these grids.
机构:
Univ Calif Santa Barbara, Dept Mech & Environm Engn, Santa Barbara, CA 93105 USAUniv Calif Santa Barbara, Dept Mech & Environm Engn, Santa Barbara, CA 93105 USA
Vaidya, U
Mezic, I
论文数: 0引用数: 0
h-index: 0
机构:Univ Calif Santa Barbara, Dept Mech & Environm Engn, Santa Barbara, CA 93105 USA