We show a global existence for the Cauchy problem with large initial data for the p-harmonic flow between two smooth, compact Riemannian manifolds. We devise new monotonicity type formulas of a local scaled energy and establish a partial regularity for the solution. The partial regularity obtained is almost optimal, comparing with that of the corresponding stationary case. The p-harmonic flow obtained also converges to a p-harmonic map along a certain time sequence tending to infinity.
机构:
Univ Naples Federico II, Dipartimento Matemat & Applicaz R Caccioppoli, I-80126 Naples, ItalyUniv Naples Federico II, Dipartimento Matemat & Applicaz R Caccioppoli, I-80126 Naples, Italy
Greco, L
Verde, A
论文数: 0引用数: 0
h-index: 0
机构:
Univ Naples Federico II, Dipartimento Matemat & Applicaz R Caccioppoli, I-80126 Naples, ItalyUniv Naples Federico II, Dipartimento Matemat & Applicaz R Caccioppoli, I-80126 Naples, Italy
机构:
Northwestern Univ, Dept Math, 2033 Sheridan Rd, Evanston, IL 60208 USANorthwestern Univ, Dept Math, 2033 Sheridan Rd, Evanston, IL 60208 USA
Naber, Aaron
Valtorta, Daniele
论文数: 0引用数: 0
h-index: 0
机构:
Univ Zurich, Math Nat Wissensch Liche Fak, Winterthurerstr 190, CH-8057 Zurich, SwitzerlandNorthwestern Univ, Dept Math, 2033 Sheridan Rd, Evanston, IL 60208 USA
Valtorta, Daniele
Veronelli, Giona
论文数: 0引用数: 0
h-index: 0
机构:
Univ Paris 13, Sorbonne Paris Cite, 99 Av J Baptiste Clement, F-93430 Villetaneuse, FranceNorthwestern Univ, Dept Math, 2033 Sheridan Rd, Evanston, IL 60208 USA