On the convergence of subproper (multi)-splitting methods for solving rectangular linear systems

被引:0
|
作者
Lijing Lin
Yimin Wei
机构
[1] Institute of Mathematics,
[2] School of Mathematical Science,undefined
[3] Fudan University,undefined
[4] Shanghai,undefined
[5] 200433 P.R. of China and,undefined
[6] Key Laboratory of Nonlinear Science (Fudan University),undefined
[7] Ministry of Education,undefined
[8] Department of Mathematics,undefined
[9] School of Mathematical Science,undefined
[10] Fudan University,undefined
[11] Shanghai,undefined
[12] 200433 P.R. of China and,undefined
[13] Key Laboratory of Nonlinear Science (Fudan University),undefined
[14] Ministry of Education,undefined
来源
Calcolo | 2008年 / 45卷
关键词
Iterative Method; Splitting Method; Matrix Anal; Iteration Matrix; Singular Linear System;
D O I
暂无
中图分类号
学科分类号
摘要
We give a convergence criterion for stationary iterative schemes based on subproper splittings for solving rectangular systems and show that, for special splittings, convergence and quotient convergence are equivalent. We also analyze the convergence of multisplitting algorithms for the solution of rectangular systems when the coefficient matrices have special properties and the linear systems are consistent.
引用
收藏
页码:17 / 33
页数:16
相关论文
共 50 条