Complete moment and integral convergence for sums of negatively associated random variables

被引:0
|
作者
Han Ying Liang
De Li Li
Andrew Rosalsky
机构
[1] Tongji University,Department of Mathematics
[2] Lakehead University,Department of Mathematical Sciences
[3] University of Florida,Department of Statistics
关键词
Baum-Katz’s law; Lai’s law; complete moment convergence; complete integral convergence; convergence rate of tail probabilities; sums of identically distributed and negatively associated random variables; 60G50;
D O I
暂无
中图分类号
学科分类号
摘要
For a sequence of identically distributed negatively associated random variables “Xn; n ≥ 1” with partial sums Sn = Σi=1nXi, n ≥ 1, refinements are presented of the classical Baum-Katz and Lai complete convergence theorems. More specifically, necessary and sufficient moment conditions are provided for complete moment convergence of the form \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \sum\limits_{n \geqslant n_0 } {n^{r - 2 - \tfrac{1} {{pq}}} a_n E\left( {\mathop {\max }\limits_{1 \leqslant k \leqslant n} \left| {S_k } \right|^{\tfrac{1} {q}} - \varepsilon b_n^{\tfrac{1} {{pq}}} } \right)^ + < \infty } $$\end{document} to hold where r > 1, q > 0 and either n0 = 1, 0 < p < 2, an = 1, bn = n or n0 = 3, p = 2, an = (log n)−1/2q, bn = n log n. These results extend results of Chow and of Li and Spătaru from the independent and identically distributed case to the identically distributed negatively associated setting. The complete moment convergence is also shown to be equivalent to a form of complete integral convergence.
引用
收藏
页码:419 / 432
页数:13
相关论文
共 50 条