Sign changes of Hecke eigenvalues

被引:0
|
作者
Kaisa Matomäki
Maksym Radziwiłł
机构
[1] University of Turku,Department of Mathematics and Statistics
[2] Institute for Advanced Study,School of Mathematics
[3] Rutgers University,Department of Mathematics
来源
关键词
Cusp Form; Multiplicative Function; Holomorphic Form; Positive Proportion; Maass Form;
D O I
暂无
中图分类号
学科分类号
摘要
Let f be a holomorphic or Maass Hecke cusp form for the full modular group and write λf(n)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\lambda_f(n)}$$\end{document} for the corresponding Hecke eigenvalues. We are interested in the signs of those eigenvalues. In the holomorphic case, we show that for some positive constant δ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\delta}$$\end{document} and every large enough x, the sequence (λf(n))n≤x\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${(\lambda_f(n))_{n \leq x}}$$\end{document} has at least δx\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\delta x}$$\end{document} sign changes. Furthermore we show that half of non-zero λf(n)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\lambda_f(n)}$$\end{document} are positive and half are negative. In the Maass case, it is not yet known that the coefficients are non-lacunary, but our method is robust enough to show that on the relative set of non-zero coefficients there is a positive proportion of sign changes. In both cases previous lower bounds for the number of sign changes were of the form xδ for some δ < 1.
引用
收藏
页码:1937 / 1955
页数:18
相关论文
共 50 条