Ice front blocking of ocean heat transport to an Antarctic ice shelf

被引:0
|
作者
A. K. Wåhlin
N. Steiger
E. Darelius
K. M. Assmann
M. S. Glessmer
H. K. Ha
L. Herraiz-Borreguero
C. Heuzé
A. Jenkins
T. W. Kim
A. K. Mazur
J. Sommeria
S. Viboud
机构
[1] University of Gothenburg,Department of Marine Sciences
[2] University of Bergen,Bjerknes Centre for Climate Research
[3] University of Bergen,Geophysical Institute
[4] Leibniz Institute for Science and Mathematics Education,Department of Ocean Sciences
[5] Inha University,Department of Earth Sciences
[6] Commonwealth Scientific and Industrial Research Organisation (CSIRO),Laboratoire des Écoulements Géophysiques et Industriels
[7] Centre for Southern Hemisphere Oceans Research,Department of Geography and Environmental Sciences
[8] University of Gothenburg,undefined
[9] British Antarctic Survey,undefined
[10] Korea Polar Research Institute,undefined
[11] L’université Grenoble-Alpes,undefined
[12] Institute of Marine Research,undefined
[13] Northumbria University,undefined
来源
Nature | 2020年 / 578卷
关键词
D O I
暂无
中图分类号
学科分类号
摘要
Mass loss from the Antarctic Ice Sheet to the ocean has increased in recent decades, largely because the thinning of its floating ice shelves has allowed the outflow of grounded ice to accelerate1,2. Enhanced basal melting of the ice shelves is thought to be the ultimate driver of change2,3, motivating a recent focus on the processes that control ocean heat transport onto and across the seabed of the Antarctic continental shelf towards the ice4–6. However, the shoreward heat flux typically far exceeds that required to match observed melt rates2,7,8, suggesting that other critical controls exist. Here we show that the depth-independent (barotropic) component of the heat flow towards an ice shelf is blocked by the marked step shape of the ice front, and that only the depth-varying (baroclinic) component, which is typically much smaller, can enter the sub-ice cavity. Our results arise from direct observations of the Getz Ice Shelf system and laboratory experiments on a rotating platform. A similar blocking of the barotropic component may occur in other areas with comparable ice–bathymetry configurations, which may explain why changes in the density structure of the water column have been found to be a better indicator of basal melt rate variability than the heat transported onto the continental shelf9. Representing the step topography of the ice front accurately in models is thus important for simulating ocean heat fluxes and induced melt rates.
引用
收藏
页码:568 / 571
页数:3
相关论文
共 50 条
  • [1] Ice front blocking of ocean heat transport to an Antarctic ice shelf
    Wahlin, A. K.
    Steiger, N.
    Darelius, E.
    Assmann, K. M.
    Glessmer, M. S.
    Ha, H. K.
    Herraiz-Borreguero, L.
    Heuze, C.
    Jenkins, A.
    Kim, T. W.
    Mazur, A. K.
    Sommeria, J.
    Viboud, S.
    [J]. NATURE, 2020, 578 (7796) : 568 - +
  • [2] Ice front retreat reconfigures meltwater-driven gyres modulating ocean heat delivery to an Antarctic ice shelf
    Yoon, Seung-Tae
    Lee, Won Sang
    Nam, SungHyun
    Lee, Choon-Ki
    Yun, Sukyoung
    Heywood, Karen
    Boehme, Lars
    Zheng, Yixi
    Lee, Inhee
    Choi, Yeon
    Jenkins, Adrian
    Jin, Emilia Kyung
    Larter, Robert
    Wellner, Julia
    Dutrieux, Pierre
    Bradley, Alexander T.
    [J]. NATURE COMMUNICATIONS, 2022, 13 (01)
  • [3] Ice front retreat reconfigures meltwater-driven gyres modulating ocean heat delivery to an Antarctic ice shelf
    Seung-Tae Yoon
    Won Sang Lee
    SungHyun Nam
    Choon-Ki Lee
    Sukyoung Yun
    Karen Heywood
    Lars Boehme
    Yixi Zheng
    Inhee Lee
    Yeon Choi
    Adrian Jenkins
    Emilia Kyung Jin
    Robert Larter
    Julia Wellner
    Pierre Dutrieux
    Alexander T. Bradley
    [J]. Nature Communications, 13
  • [4] Observed platelet ice distributions in Antarctic sea ice: An index for ocean-ice shelf heat flux
    Langhorne, P. J.
    Hughes, K. G.
    Gough, A. J.
    Smith, I. J.
    Williams, M. J. M.
    Robinson, N. J.
    Stevens, C. L.
    Rack, W.
    Price, D.
    Leonard, G. H.
    Mahoney, A. R.
    Haas, C.
    Haskell, T. G.
    [J]. GEOPHYSICAL RESEARCH LETTERS, 2015, 42 (13) : 5442 - 5451
  • [5] MAPPING ICE FRONT CHANGES OF MULLER ICE SHELF, ANTARCTIC PENINSULA
    WARD, CG
    [J]. ANTARCTIC SCIENCE, 1995, 7 (02) : 197 - 198
  • [6] Antarctic ice shelf disintegration triggered by sea ice loss and ocean swell
    Massom, Robert A.
    Scambos, Theodore A.
    Bennetts, Luke G.
    Reid, Phillip
    Squire, Vernon A.
    Stammerjohn, Sharon E.
    [J]. NATURE, 2018, 558 (7710) : 383 - +
  • [7] Antarctic ice shelf disintegration triggered by sea ice loss and ocean swell
    Robert A. Massom
    Theodore A. Scambos
    Luke G. Bennetts
    Phillip Reid
    Vernon A. Squire
    Sharon E. Stammerjohn
    [J]. Nature, 2018, 558 : 383 - 389
  • [8] Antarctic Slope Undercurrent and onshore heat transport driven by ice shelf melting
    Si, Yidongfang
    Stewart, Andrew L.
    Silvano, Alessandro
    Garabato, Alberto C. Naveira
    [J]. SCIENCE ADVANCES, 2024, 10 (16):
  • [9] Numerical model studies of Antarctic ice-sheet-ice-shelf-ocean systems and ice caps
    Lange, M. A.
    Blindow, N.
    Breuer, B.
    Grosfeld, K.
    Kleiner, T.
    Mohrholz, C. -O.
    Nicolaus, M.
    Oelke, C.
    Sandhaeger, H.
    Thoma, M.
    [J]. ANNALS OF GLACIOLOGY, VOL 41 2005, 2005, 41 : 111 - 120
  • [10] Impact of Antarctic ice shelf basal melting on sea ice and deep ocean properties
    Hellmer, HH
    [J]. GEOPHYSICAL RESEARCH LETTERS, 2004, 31 (10) : L103071 - 4