Interval-valued prime fuzzy ideals of semigroups

被引:9
|
作者
Kar S. [1 ]
Shum K.P. [2 ]
Sarkar P. [1 ]
机构
[1] Department of Mathematics, Jadavpur University, Kolkata
[2] Institute ofMathematics, Yunnan University, Kunming
关键词
Interval Number; Interval-valued Completely Prime Fuzzy Ideal; Interval-valued Fuzzy Ideals; Interval-valued Prime Fuzzy Ideal; Intervalvalued Fuzzy Point; Semigroup;
D O I
10.1134/S1995080212040117
中图分类号
学科分类号
摘要
We study the interval-valued fuzzy ideals of a semigroup S. For the sake of brevity, we simply call the interval-valued fuzzy ideals and the interval-valued fuzzy points as the (i-v) fuzzy ideals and the (i-v) fuzzy points, respectively. It is proved that if μ̃ is an (i-v) fuzzy ideal of a semigroup S, then μ̃ is an (i-v) prime fuzzy ideal of S if and only if μ̃c is an (i-v) fuzzy m-system of S. Some characterization theorems of the (i-v) prime fuzzy ideals and (i-v) completely prime fuzzy ideals of semigroup S are given. © 2013 Pleiades Publishing, Ltd.
引用
收藏
页码:11 / 19
页数:8
相关论文
共 50 条
  • [1] On Interval-Valued Rough Fuzzy Prime Bi-Ideals of Semigroups
    Subha, V. S.
    Thillaigovindan, N.
    Dhanalakshmi, P.
    RECENT TRENDS IN PURE AND APPLIED MATHEMATICS, 2019, 2177
  • [2] Interval-valued fuzzy ideals generated by an interval-valued fuzzy subset in semigroups
    Narayanan Al.
    Manikantan T.
    Journal of Applied Mathematics and Computing, 2006, 20 (1-2) : 455 - 464
  • [3] Interval-Valued Semiprime Fuzzy Ideals of Semigroups
    Kar, Sukhendu
    Sarkar, Paltu
    Hila, Kostaq
    ADVANCES IN FUZZY SYSTEMS, 2014, 2014
  • [4] A New Generalization of Hesitant and Interval-Valued Fuzzy Ideals of Ternary Semigroups
    Julatha, Pongpun
    Iampan, Aiyared
    INTERNATIONAL JOURNAL OF FUZZY LOGIC AND INTELLIGENT SYSTEMS, 2021, 21 (02) : 169 - 175
  • [5] Classification of Ordered Semigroups in Terms of Generalized Interval-Valued Fuzzy Interior Ideals
    Khan, Hidayat Ullah
    Sarmin, Nor Haniza
    Khan, Asghar
    Khan, Faiz Muhammad
    JOURNAL OF INTELLIGENT SYSTEMS, 2016, 25 (02) : 297 - 318
  • [6] On generalized interval valued fuzzy ideals of semigroups
    Gaketem, T.
    Siripitukdet, M.
    JOURNAL OF DISCRETE MATHEMATICAL SCIENCES & CRYPTOGRAPHY, 2022, 25 (06): : 1867 - 1884
  • [7] Generalized interval valued fuzzy ideals in semigroups
    Gaketem, Thiti
    Khamrot, Pannawit
    JOURNAL OF MATHEMATICS AND COMPUTER SCIENCE-JMCS, 2024, 34 (02): : 116 - 127
  • [8] Interval-Valued Fuzzy Congruences on Inverse Semigroups
    Khan, F. M.
    Sarmin, N. H.
    Shabir, M.
    Khan, A.
    MATEMATIKA, 2011, 27 (02) : 109 - 120
  • [9] INTERVAL VALUED FUZZY (1, 2)-IDEALS IN SEMIGROUPS
    Gaketem, Thiti
    JP JOURNAL OF ALGEBRA NUMBER THEORY AND APPLICATIONS, 2020, 47 (01): : 1 - 13
  • [10] Interval-Valued fuzzy hypergraph and Interval-Valued fuzzy hyperoperations
    Feng, Yuming
    Tu, Dan
    Li, Hongyi
    Italian Journal of Pure and Applied Mathematics, 2016, 36 : 1 - 12