Multipliers of weighted semigroups and associated Beurling Banach algebras

被引:0
|
作者
S J BHATT
P A DABHI
H V DEDANIA
机构
[1] Sardar Patel University,Department of Mathematics
来源
关键词
Weighted semigroup; multipliers on a semigroup; generalized semi-characters; Beurling algebras; unique uniform norm property;
D O I
暂无
中图分类号
学科分类号
摘要
Given a weighted discrete abelian semigroup (S, ω), the semigroup Mω(S) of ω-bounded multipliers as well as the Rees quotient Mω(S)/S together with their respective weights \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\tilde{\omega}$\end{document} and \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\tilde{\omega}_q$\end{document} induced by ω are studied; for a large class of weights ω, the quotient \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\ell^1(M_{\omega}(S),\tilde{\omega})/\ell^1(S,{\omega})$\end{document} is realized as a Beurling algebra on the quotient semigroup Mω(S)/S; the Gel’fand spaces of these algebras are determined; and Banach algebra properties like semisimplicity, uniqueness of uniform norm and regularity of associated Beurling algebras on these semigroups are investigated. The involutive analogues of these are also considered. The results are exhibited in the context of several examples.
引用
收藏
页码:417 / 433
页数:16
相关论文
共 50 条