3D Printing of high melting iron alloys using metal-fused deposition modeling: a comprehensive review

被引:0
|
作者
Matthew Drummond
Abdelkrem Eltaggaz
Ibrahim Deiab
机构
[1] University of Guelph,School of Engineering
关键词
Additive Manufacturing; Metal FDM; 3D Printing; 316L Stainless Steel; 17-4 Stainless Steel;
D O I
暂无
中图分类号
学科分类号
摘要
Advancements in additive manufacturing (AM) have allowed for a transition in the manufacturing industry. The ability to print solid metal parts for use in prototypes, custom tooling, and fast replacement parts has driven advancements in the manufacturing sector. Material extrusion additive manufacturing processes such as fused deposition modeling (FDM) is a common AM processes in the world of thermoplastics and it is being developed in the field of metal additive manufacturing. Metal FDM (FDMm) process provides a low cost, customizable, and user-friendly printing experience while still delivering high printing tolerances. While there are many materials that can be printed using FDM technologies, process parameters vary across materials resulting in inconsistent process parameters across the industry. This review paper focuses on the techniques and parameters performed by various researchers for the printing, debinding, and sintering of FDM printed 316L Stainless Steel, 17-4PH Stainless Steel and high melt Iron alloy filaments.
引用
收藏
页码:1 / 22
页数:21
相关论文
共 50 条
  • [1] 3D Printing of high melting iron alloys using metal-fused deposition modeling: a comprehensive review
    Drummond, Matthew
    Eltaggaz, Abdelkrem
    Deiab, Ibrahim
    INTERNATIONAL JOURNAL OF ADVANCED MANUFACTURING TECHNOLOGY, 2023, 129 (1-2): : 1 - 22
  • [2] 3D Printing of Low Melting Temperature Alloys by Fused Deposition Modeling
    Hsieh, P. C.
    Tsai, C. H.
    Liul, B. H.
    Wei, W. C. J.
    Wang, A. B.
    Luo, R. C.
    PROCEEDINGS 2016 IEEE INTERNATIONAL CONFERENCE ON INDUSTRIAL TECHNOLOGY (ICIT), 2016, : 1138 - 1142
  • [3] The Fused Deposition Modeling 3D Printing
    Yan, Longwei
    Sun, Huichao
    Qu, Xingtian
    Zhou, Wei
    Proceedings of the 2016 International Conference on Electrical, Mechanical and Industrial Engineering (ICEMIE), 2016, 51 : 201 - 203
  • [4] THERMOPLASTICS 3D PRINTING USING FUSED DEPOSITION MODELING ON FABRICS
    Blais, Maxwell
    Tomlinson, Scott
    Khoda, Bashir
    PROCEEDINGS OF ASME 2021 INTERNATIONAL MECHANICAL ENGINEERING CONGRESS AND EXPOSITION (IMECE2021), VOL 3, 2021,
  • [5] Use of Biomaterials for 3D Printing by Fused Deposition Modeling Technique: A Review
    Wasti, Sanjita
    Adhikari, Sushil
    FRONTIERS IN CHEMISTRY, 2020, 8
  • [6] Iron–Paraffin Composite Material for 3D Printing by Fused Deposition Modeling Method
    V.P. Bondarenko
    O.V. Ievdokymova
    O.O. Matviichuk
    K.Ye. Kutakh
    M.O. Tsysar
    Powder Metallurgy and Metal Ceramics, 2021, 59 : 730 - 738
  • [7] Metal 3D Printing by Fused Deposition Modeling (FDM) with Metal Powder Filament Materials
    Minh P.S.
    Toan H.D.S.
    Son T.A.
    Defect and Diffusion Forum, 2022, 417 : 61 - 65
  • [8] Thermoplastic Elastomer for 3D Printing by Fused Deposition Modeling
    M. V. Timoshenko
    S. V. Balabanov
    M. M. Sychev
    D. I. Nikiforov
    Polymer Science, Series A, 2021, 63 : 652 - 656
  • [9] Thermoplastic Elastomer for 3D Printing by Fused Deposition Modeling
    Timoshenko, M., V
    Balabanov, S., V
    Sychev, M. M.
    Nikiforov, D., I
    POLYMER SCIENCE SERIES A, 2021, 63 (06) : 652 - 656
  • [10] Plasticized Protein For 3D Printing By Fused Deposition Modeling
    Chaunier, Laurent
    Leroy, Eric
    Della Valle, Guy
    Lourdin, Denis
    PROCEEDINGS OF THE 19TH INTERNATIONAL ESAFORM CONFERENCE ON MATERIAL FORMING (ESAFORM 2016), 2016, 1769