Freshness uniformity measurement network based on multi-layer feature fusion and histogram layer

被引:0
|
作者
Ying Zang
Chunan Yu
Chenglong Fu
Zhenfeng Xue
Qingshan Liu
Yong Zhang
机构
[1] Huzhou University,School of Information Engineering
[2] Huzhou Institute of Zhejiang University,School of Computer and Information Technology
[3] Liaoning Normal University,undefined
来源
关键词
Freshness uniformity measure; Texture recognition; Histogram layer; Multi-scale feature fusion; Attention mechanism;
D O I
暂无
中图分类号
学科分类号
摘要
The arrangement of products on supermarket freshness shelves exhibits a certain pattern and displays distinct texture characteristics. In recent years, many studies have applied texture extraction algorithms in deep learning, such as the Histogram Layer Residual Network (HistNet). However, this algorithm still has obvious disadvantages, such as neglecting the optimal representation of multi-scale texture features and lacking feature selection during extraction. To address these issues, this paper introduces a novel texture classification network—Multi-Scale Feature Histogram Network (MFHisNet). First, we design a Multi-Scale Feature Fusion Module (MF-Block) to achieve a multi-level representation of texture information. Then, we utilize an attention module (CBAM) to weight crucial information and suppress background interference for deeper level texture features. Experimental results demonstrate that the model achieves accuracies of 82.12 ±2.04%\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\%$$\end{document}, 73.13±1.10%\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\%$$\end{document}, and 83.46±0.62%\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\%$$\end{document} on the GTOS-mobile, DTD, and MINC-2500 datasets, respectively. Furthermore, based on the proposed model, we propose a measurement method that uses cosine similarity to measure the uniformity of freshness placement, and the effectiveness of this method was verified on the dataset we collected.
引用
收藏
页码:1525 / 1538
页数:13
相关论文
共 50 条
  • [1] Freshness uniformity measurement network based on multi-layer feature fusion and histogram layer
    Zang, Ying
    Yu, Chunan
    Fu, Chenglong
    Xue, Zhenfeng
    Liu, Qingshan
    Zhang, Yong
    SIGNAL IMAGE AND VIDEO PROCESSING, 2024, 18 (02) : 1525 - 1538
  • [2] Facial Expression Analysis Based on Fusion Multi-Layer Convolutional Layer Feature Neural Network
    Meng, Hao
    Yuan, Fei
    Yan, Tianhao
    FUZZY SYSTEMS AND DATA MINING VI, 2020, 331 : 43 - 51
  • [3] Shrimps Classification Based on Multi-layer Feature Fusion
    Zhang, Xiaoxue
    Wei, Zhiqiang
    Huang, Lei
    Ji, Xiaopeng
    TENTH INTERNATIONAL CONFERENCE ON GRAPHICS AND IMAGE PROCESSING (ICGIP 2018), 2019, 11069
  • [4] Fish image recognition method based on multi-layer feature fusion convolutional network
    Li, Lipeng
    Shi, Feipeng
    Wang, Chunxu
    ECOLOGICAL INFORMATICS, 2022, 72
  • [5] MLFF: A Object Detector based on a Multi-Layer Feature Fusion
    Peng, Panyu
    Liu, Yong
    Lv, Xingfeng
    2021 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2021,
  • [6] CFNet: Head detection network based on multi-layer feature fusion and attention mechanism
    Han, Jing
    Wang, Xiaoying
    Wang, Xichang
    Lv, Xueqiang
    IET IMAGE PROCESSING, 2023, 17 (07) : 2032 - 2042
  • [7] Multi-layer Feature Fusion Network with Atrous Convolution for Pedestrian Detection
    Li, You
    Zhang, Qingxuan
    Zhang, Yulei
    2019 3RD INTERNATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE, AUTOMATION AND CONTROL TECHNOLOGIES (AIACT 2019), 2019, 1267
  • [8] A dual-encoder network based on multi-layer feature fusion for infrared and visible image fusion
    Huang, Shuying
    Wu, Xueqiang
    Yang, Yong
    Wan, Weiguo
    Wang, Xiaozheng
    INTERNATIONAL JOURNAL OF MACHINE LEARNING AND CYBERNETICS, 2024, 15 (10) : 4511 - 4520
  • [9] Multimodal Sentiment Analysis Based on Attentional Temporal Convolutional Network and Multi-Layer Feature Fusion
    Cheng, Hongju
    Yang, Zizhen
    Zhang, Xiaoqi
    Yang, Yang
    IEEE TRANSACTIONS ON AFFECTIVE COMPUTING, 2023, 14 (04) : 3149 - 3163
  • [10] Hyperspectral image classification based on a novel Lush multi-layer feature fusion bias network
    Shi, Cuiping
    Chen, Jiaxiang
    Wang, Liguo
    EXPERT SYSTEMS WITH APPLICATIONS, 2024, 247