Rates of Convergence in the Central Limit Theorem for Nonlinear Statistics Under Relaxed Moment Conditions

被引:0
|
作者
Nguyen Tien Dung
机构
[1] VNU University of Science,Department of Mathematics
[2] Vietnam National University,undefined
来源
关键词
Central limit theorem; Rate of convergence; Nonlinear statistics; Stein’s method; 60F05; 62E17;
D O I
暂无
中图分类号
学科分类号
摘要
This paper is concerned with normal approximation under relaxed moment conditions using Stein’s method. We obtain the explicit rates of convergence in the central limit theorem for (i) nonlinear statistics with finite absolute moment of order 2 + δ ∈ (2,3] and (ii) nonlinear statistics with vanishing third moment and finite absolute moment of order 3 + δ ∈ (3,4]. When applied to specific examples, these rates are of the optimal order On−δ2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$O\left (n^{-\frac {\delta }{2}}\right )$\end{document} and On−1+δ2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$O\left (n^{-\frac {1+\delta }{2}}\right )$\end{document}. Our proofs are based on the covariance identity formula and simple observations about the solution of Stein’s equation.
引用
收藏
页码:635 / 660
页数:25
相关论文
共 50 条
  • [2] Improvement of convergence rate estimates in the central limit theorem under weakened moment conditions
    V. Yu. Korolev
    S. V. Popov
    [J]. Doklady Mathematics, 2012, 86 : 506 - 511
  • [3] Improvement of convergence rate estimates in the central limit theorem under weakened moment conditions
    Korolev, V. Yu.
    Popov, S. V.
    [J]. DOKLADY MATHEMATICS, 2012, 86 (01) : 506 - 511
  • [4] Rates of convergence in the central limit theorem for linear statistics of martingale differences
    Dedecker, Jerome
    Merlevede, Florence
    [J]. STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 2011, 121 (05) : 1013 - 1043
  • [5] A bound on the rate of convergence in the central limit theorem for renewal processes under second moment conditions
    Reinert, G.
    Yang, C.
    [J]. JOURNAL OF APPLIED PROBABILITY, 2020, 57 (01) : 343 - 360
  • [6] ON CONVERGENCE RATES IN CENTRAL LIMIT THEOREM
    HERTZ, ES
    [J]. ANNALS OF MATHEMATICAL STATISTICS, 1969, 40 (02): : 475 - &
  • [7] CONVERGENCE RATES FOR CENTRAL LIMIT THEOREM
    FRIEDMAN, N
    KATZ, M
    KOOPMANS, LH
    [J]. PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1966, 56 (04) : 1062 - &
  • [8] Convergence Rates for the Quantum Central Limit Theorem
    Becker, Simon
    Datta, Nilanjana
    Lami, Ludovico
    Rouze, Cambyse
    [J]. COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2021, 383 (01) : 223 - 279
  • [9] Convergence Rates for the Quantum Central Limit Theorem
    Simon Becker
    Nilanjana Datta
    Ludovico Lami
    Cambyse Rouzé
    [J]. Communications in Mathematical Physics, 2021, 383 : 223 - 279
  • [10] Rates of convergence in the free central limit theorem
    Maejima, Makoto
    Sakuma, Noriyoshi
    [J]. STATISTICS & PROBABILITY LETTERS, 2023, 197