Affine cartesian codes

被引:0
|
作者
Hiram H. López
Carlos Rentería-Márquez
Rafael H. Villarreal
机构
[1] Centro de Investigación y de Estudios Avanzados del IPN,Departamento de Matemáticas
[2] Instituto Politécnico Nacional,Departamento de Matemáticas, Escuela Superior de Física y Matemáticas
来源
关键词
Evaluation codes; Minimum distance; Complete intersections; Vanishing ideals; Degree; Regularity; Hilbert function; Algebraic invariants; 13P25; 14G50; 94B27; 11T71;
D O I
暂无
中图分类号
学科分类号
摘要
We compute the basic parameters (dimension, length, minimum distance) of affine evaluation codes defined on a cartesian product of finite sets. Given a sequence of positive integers, we construct an evaluation code, over a degenerate torus, with prescribed parameters of a certain type. As an application of our results, we recover the formulas for the minimum distance of various families of evaluation codes.
引用
收藏
页码:5 / 19
页数:14
相关论文
共 50 条
  • [1] Affine cartesian codes
    Lopez, Hiram H.
    Renteria-Marquez, Carlos
    Villarreal, Rafael H.
    [J]. DESIGNS CODES AND CRYPTOGRAPHY, 2014, 71 (01) : 5 - 19
  • [2] Affine Cartesian codes with complementary duals
    Lopez, Hiram H.
    Manganiello, Felice
    Matthews, Gretchen L.
    [J]. FINITE FIELDS AND THEIR APPLICATIONS, 2019, 57 : 13 - 28
  • [3] Generalized Hamming weights of affine Cartesian codes
    Beelen, Peter
    Datta, Mrinmoy
    [J]. FINITE FIELDS AND THEIR APPLICATIONS, 2018, 51 : 130 - 145
  • [4] Relative generalized Hamming weights of affine Cartesian codes
    Datta, Mrinmoy
    [J]. DESIGNS CODES AND CRYPTOGRAPHY, 2020, 88 (06) : 1273 - 1284
  • [5] On the next-to-minimal weight of affine cartesian codes
    Carvalho, Cicero
    Neumann, Victor G. L.
    [J]. FINITE FIELDS AND THEIR APPLICATIONS, 2017, 44 : 113 - 134
  • [6] Relative generalized Hamming weights of affine Cartesian codes
    Mrinmoy Datta
    [J]. Designs, Codes and Cryptography, 2020, 88 : 1273 - 1284
  • [7] Completing the determination of the next -to -minimal weights of affine cartesian codes
    Carvalho, Cicero
    Neumann, Victor G. L.
    [J]. FINITE FIELDS AND THEIR APPLICATIONS, 2021, 69
  • [8] Affine connections for the Cartesian stiffness matrix
    Zefran, M
    Kumar, V
    [J]. 1997 IEEE INTERNATIONAL CONFERENCE ON ROBOTICS AND AUTOMATION - PROCEEDINGS, VOLS 1-4, 1997, : 1376 - 1381
  • [9] Logarithm Cartesian authentication codes
    Sze, TW
    Chanson, S
    Ding, C
    Helleseth, T
    Parker, MG
    [J]. INFORMATION AND COMPUTATION, 2003, 184 (01) : 93 - 108
  • [10] On the construction of Cartesian authentication codes
    Ma, Wenping
    Wang, Xinmei
    [J]. Tien Tzu Hsueh Pao/Acta Electronica Sinica, 1999, 27 (05): : 33 - 35