Parameter estimation for the Pareto distribution based on ranked set sampling

被引:0
|
作者
Wenshu Qian
Wangxue Chen
Xiaofang He
机构
[1] Jishou University,Department of Mathematics and Statistics
来源
Statistical Papers | 2021年 / 62卷
关键词
Ranked set sampling; Unbiased estimator; Best linear unbiased estimator; Modified unbiased estimator; Modified best linear unbiased estimator;
D O I
暂无
中图分类号
学科分类号
摘要
Ranked set sampling (RSS) is an efficient method for estimating parameters when exact measurement of observation is difficult and/or expensive. In the current paper, several traditional and ad hoc estimators of the scale and shape parameters θ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\theta $$\end{document} and α\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha $$\end{document} from the Pareto distribution p(θ,α)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p(\theta ,\alpha )$$\end{document} will be respectively studied in cases when one parameter is known and when both are unknown under simple random sampling, RSS and some of its modifications such as extreme RSS(ERSS) and median RSS(MRSS). It is found for estimating of θ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\theta $$\end{document} from p(θ,α)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p(\theta ,\alpha )$$\end{document} in which α\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha $$\end{document} is known, the best linear unbiased estimator (BLUE) under ERSS is more efficient than the other estimators under the other sampling techniques. For estimating of α\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha $$\end{document} from p(θ,α)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p(\theta ,\alpha )$$\end{document} in which θ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\theta $$\end{document} is known, the modified BLUE under MRSS is more efficient than the other estimators under the other sampling techniques. For estimating of θ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\theta $$\end{document} and α\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha $$\end{document} from p(θ,α)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p(\theta ,\alpha )$$\end{document} in which both are unknown, the ad hoc estimators under ERSS are more efficient than the other estimators under the other sampling techniques. All efficiencies of these estimators are simulated under imperfect ranking. A real data set is used for illustration.
引用
收藏
页码:395 / 417
页数:22
相关论文
共 50 条
  • [1] Parameter estimation for the Pareto distribution based on ranked set sampling
    Qian, Wenshu
    Chen, Wangxue
    He, Xiaofang
    [J]. STATISTICAL PAPERS, 2021, 62 (01) : 395 - 417
  • [2] Estimation of a parameter of bivariate Pareto distribution by ranked set sampling
    Chacko, Manoj
    Thomas, P. Yageen
    [J]. JOURNAL OF APPLIED STATISTICS, 2007, 34 (06) : 703 - 714
  • [3] Parameter Estimation of the Exponentiated Pareto Distribution Using Ranked Set Sampling and Simple Random Sampling
    Khamnei, Hossein Jabbari
    Meidute-Kavaliauskiene, Ieva
    Fathi, Masood
    Valackiene, Asta
    Ghorbani, Shahryar
    [J]. AXIOMS, 2022, 11 (06)
  • [4] ON PARTIAL RANKED SET SAMPLING IN PARAMETER ESTIMATION OF LOGNORMAL DISTRIBUTION
    Chandra, Girish
    Tiwari, Neeraj
    Nautiyal, Raman
    Gupta, Deb Sankar
    [J]. INTERNATIONAL JOURNAL OF AGRICULTURAL AND STATISTICAL SCIENCES, 2016, 12 (02): : 321 - 326
  • [5] Estimation of the shape and scale parameters of Pareto distribution using ranked set sampling
    Abu-Dayyeh, Walid
    Assrhani, Aissa
    Ibrahim, Kamarulzaman
    [J]. STATISTICAL PAPERS, 2013, 54 (01) : 207 - 225
  • [6] Estimation of the shape and scale parameters of Pareto distribution using ranked set sampling
    Walid Abu-Dayyeh
    Aissa Assrhani
    Kamarulzaman Ibrahim
    [J]. Statistical Papers, 2013, 54 : 207 - 225
  • [7] On the Comparison of the Interval Estimation of the Pareto Parameter under Simple Random Sampling and Ranked Set Sampling Techniques
    Aissa, Aissa Omar
    Ibrahim, Kamarulzaman
    Abu Dayyeh, Walid
    Zin, Wan Zawiah Wan
    [J]. 2ND ISM INTERNATIONAL STATISTICAL CONFERENCE 2014 (ISM-II): EMPOWERING THE APPLICATIONS OF STATISTICAL AND MATHEMATICAL SCIENCES, 2015, 1643 : 298 - 304
  • [8] Estimation of the Exponential Pareto Distribution's Parameters under Ranked and Double Ranked Set Sampling Designs
    Sabry, M. A. H.
    Ehab, Almetwally M.
    [J]. PAKISTAN JOURNAL OF STATISTICS AND OPERATION RESEARCH, 2021, 17 (01) : 169 - 184
  • [9] The efficiency of ranked set sampling for parameter estimation
    Barabesi, L
    El-Sharaawi, A
    [J]. STATISTICS & PROBABILITY LETTERS, 2001, 53 (02) : 189 - 199
  • [10] ESTIMATION OF THE SHAPE AND SCALE PARAMETERS OF THE PARETO DISTRIBUTION USING EXTREME RANKED SET SAMPLING
    Omar, Aissa
    Ibrahim, Kamarulzaman
    [J]. PAKISTAN JOURNAL OF STATISTICS, 2013, 29 (01): : 33 - 47