On the Cauchy problem for the two-component Camassa–Holm system

被引:1
|
作者
Guilong Gui
Yue Liu
机构
[1] Jiangsu University,Department of Mathematics
[2] Chinese Academy of Sciences,Academy of Mathematics and Systems Science
[3] University of Texas,Department of Mathematics
来源
Mathematische Zeitschrift | 2011年 / 268卷
关键词
Besov spaces; Blow-up; Local well-posedness; Two-component Camassa–Holm system; Wave-breaking; 35G25; 35L15; 35Q58;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper we establish the local well-posedness for the two-component Camassa–Holm system in a range of the Besov spaces. We also derive a wave-breaking mechanism for strong solutions. In addition, we determine the exact blow-up rate of such solutions to the system.
引用
收藏
页码:45 / 66
页数:21
相关论文
共 50 条
  • [1] On the Cauchy problem for the two-component Camassa-Holm system
    Gui, Guilong
    Liu, Yue
    [J]. MATHEMATISCHE ZEITSCHRIFT, 2011, 268 (1-2) : 45 - 66
  • [2] On the Cauchy problem for a two-component higher order Camassa-Holm system
    Zhou, Shouming
    Zhou, Luhang
    Chen, Rong
    [J]. MATHEMATISCHE NACHRICHTEN, 2024,
  • [3] The spatially periodic Cauchy problem for a generalized two-component μ-Camassa-Holm system
    Yu, Shengqi
    [J]. NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2014, 19 : 117 - 134
  • [4] The Cauchy problem for the modified two-component Camassa-Holm system in critical Besov space
    Yan, Wei
    Li, Yongsheng
    [J]. ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 2015, 32 (02): : 443 - 469
  • [5] CAUCHY PROBLEM FOR A GENERALIZED WEAKLY DISSIPATIVE PERIODIC TWO-COMPONENT CAMASSA-HOLM SYSTEM
    Chen, Wenxia
    Tian, Lixin
    Deng, Xiaoyan
    [J]. ELECTRONIC JOURNAL OF DIFFERENTIAL EQUATIONS, 2014,
  • [6] The periodic Cauchy problem for a two-component non-isospectral cubic Camassa-Holm system
    Zhang, Lei
    Qiao, Zhijun
    [J]. JOURNAL OF DIFFERENTIAL EQUATIONS, 2020, 268 (03) : 1270 - 1305
  • [7] On a two-component π-Camassa-Holm system
    Kohlmann, Martin
    [J]. JOURNAL OF GEOMETRY AND PHYSICS, 2012, 62 (04) : 832 - 838
  • [8] The Cauchy problem and blow-up phenomena of a new integrable two-component Camassa-Holm system
    Li, Xiuting
    [J]. NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2016, 132 : 25 - 46
  • [9] On solutions of the two-component Camassa-Holm system
    Wu, Chao-Zhong
    [J]. JOURNAL OF MATHEMATICAL PHYSICS, 2006, 47 (08)
  • [10] LIPSCHITZ METRIC FOR THE TWO-COMPONENT CAMASSA HOLM SYSTEM
    Grunert, Katrin
    Holden, Helge
    Raynaud, Xavier
    [J]. HYPERBOLIC PROBLEMS: THEORY, NUMERICS, APPLICATIONS, 2014, 8 : 193 - 207